Affiner votre recherche
Résultats 1-10 de 252
Investigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.
2017
Motesharezadeh, Babak | kamal-poor, Sama | Alikhani, Hossein Ali | Zariee, Mehdi | Azimi, Sina
This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus Glomus mosseae (M1) and non-inoculated with fungus (M0). Results show that absorption of these elements in plant increased as Cd concentration in soil became more. Inoculation by Ps448 bacteria had an incremental effect on Cd uptake by 90%, compared to the non-inoculated (control) samples. Moreover, inoculation of the plants with mycorrhizal fungus increased Cd uptake by 24%, compared to the control. Also, it has been observed that plant resistance to metal stress and plant growth under such conditions ascended in treatments wherein inoculation happened with mycorrhizal fungus and bacteria. The highest Cd heavy metal uptake has been observed in Eucalyptus (shoots and roots), treatment (C2B2M1) with 648.19 micrograms per one seedling in pot. According to the obtained results, Eucalyptus with biological factors (fungi and bacteria) has the ability to clean and purify the contaminated soil with Cd heavy metal.
Afficher plus [+] Moins [-]Isolation and characterization of diesel-degrading Pseudomonas strains from diesel-contaminated soils in Iran (Fars province)
2016
Niazy, Zahar | Hassanshahian, Mehdi | Ataei, Ahmad
In this study, among the 21 diesel-degrading bacteria that were isolated from an oil-polluted area in Fars (Iran), 6 bacterial strains were tested for their capability to metabolize and grow on diesel oil by degrading its hydrocarbons content. The biochemical characteristics and 16S rRNA sequence analysis of diesel-degrading bacteria showed that these strains were related to the genus Pseudomonas. Among the six isolates, five strains (L1, I2, D1, D2, and G1) were clustered with Pseudomonas aeruginosa, whereas only one strain (K3) was clustered with Pseudomonas fragi. Gas chromatographic (GC) analysis of the diesel oil that was remaining in the culture medium after 10 days of culture at 30°C showed that P. aeruginosa I2 presented the highest growth rate and diesel-oil degradation (88%) between all isolates. P. aeruginosa I2 also presented the best emulsification activity, but the best hydrophobicity was seen in P. aeruginosa G1. By applying these bacteria in bioremediation processes, diesel oil contamination in soil can be counteracted.
Afficher plus [+] Moins [-]Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume nodulation in Zn/Pb/Cd mine tailings
2017
Soussou, Souhir | Brunel, Brigitte | Pervent, Marjorie | van Tuinen, Diederik | Cleyet-Marel, Jean Claude | Baudoin, Ezekiel | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | ANR-10-CESA-0006,SyMetal,Rhizostabilisation de déblais miniers à fortes teneurs en métaux par des plantes METALlicoles associées à leurs microorganismes SYMbiotiques(2010)
Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg(-1), respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg-1). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17-43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17-22 (1.5-1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.
Afficher plus [+] Moins [-]Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume nodulation in Zn/Pb/Cd mine tailings
2017
Soussou, Souhir | Brunel, Brigitte | Pervent, Marjorie | van Tuinen, Diederik | Cleyet-Marel, Jean Claude | Baudoin, Ezekiel | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | ANR-10-CESA-0006,SyMetal,Rhizostabilisation de déblais miniers à fortes teneurs en métaux par des plantes METALlicoles associées à leurs microorganismes SYMbiotiques(2010)
Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg(-1), respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg-1). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17-43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17-22 (1.5-1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.
Afficher plus [+] Moins [-]Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium
2016
Maqbool, Zahid | Hussain, Sabir | Ahmad, Tanvir | Nadeem, Habibullah | Imran, Muhammad | Khalid, Azeem | Abid, Muhammad | Martin-Laurent, Fabrice | Department of Environmental Sciences and Engineering ; University of North Carolina [Chapel Hill] (UNC) ; University of North Carolina System (UNC)-University of North Carolina System (UNC) | University College Dublin (UCD) | Government College University | Nuclear Institute for Agriculture and Biology ; Partenaires INRAE | Muhammad Nawaz Shareef University of Agriculture | Pir Mehr Ali Shah Arid Agriculture University = PMAS-Arid Agriculture University Rawalpindi (AAUR) | Bahauddin Zakariya University (BZU) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Higher Education Commission (HEC) of Pakistan; Government College University Faisalabad, Pakistan
International audience | Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L-1) and the azo dyes (100 mg L-1) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L-1 and a multi-metal mixture (Cr 13.10 mg L-1, Pb 26.21 mg L-1, Cd 13.10 mg L-1, Zn 26.21 mg L-1), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L-1 of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the wastewater contaminated with dyes and heavy metals.
Afficher plus [+] Moins [-]Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium
2016
Maqbool, Zahid | Hussain, Sabir | Ahmad, Tanvir | Nadeem, Habibullah | Imran, Muhammad | Khalid, Azeem | Abid, Muhammad | Martin-Laurent, Fabrice | Department of Environmental Sciences and Engineering ; University of North Carolina [Chapel Hill] (UNC) ; University of North Carolina System (UNC)-University of North Carolina System (UNC) | University College Dublin [Dublin] (UCD) | Government College University [Lahore] (GCU) | Nuclear Institute for Agriculture and Biology ; Partenaires INRAE | Muhammad Nawaz Shareef University of Agriculture | Pir Mehr Ali Shah Arid Agriculture University = PMAS-Arid Agriculture University Rawalpindi (AAUR) | Bahauddin Zakariya University (BZU) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement | Higher Education Commission (HEC) of Pakistan; Government College University Faisalabad, Pakistan
International audience | Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L-1) and the azo dyes (100 mg L-1) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L-1 and a multi-metal mixture (Cr 13.10 mg L-1, Pb 26.21 mg L-1, Cd 13.10 mg L-1, Zn 26.21 mg L-1), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L-1 of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the wastewater contaminated with dyes and heavy metals.
Afficher plus [+] Moins [-]Comparison of the efficiency and microbial mechanisms of chemical- and bio-surfactants in remediation of petroleum hydrocarbon
2022
Zhuang, Xuliang | Wang, Yaxin | Wang, Haoyu | Dong, Yuzhu | Li, Xianglong | Wang, Shijie | Fan, Haonan | Wu, Shanghua
Surfactant-enhanced remediation (SER) is one of the most effective methods for petroleum hydrocarbon-contaminated sites compared to single physical and chemical methods. However, biosurfactants are not as commonly used as chemical surfactants, and the actual remediation effects and related mechanisms remain undefined. Therefore, to comprehensively compare the remediation effects and biological mechanisms of biosurfactants and chemical surfactants, soil column leaching experiments including two biosurfactants (rhamnolipids and lipopeptide) and three commercially used chemical surfactants (Tween 80, Triton X-100, and Berol 226SA) were conducted. After seven days of leaching, rhamnolipids exhibited the highest petroleum hydrocarbon removal rate of 61.01%, which was superior to that of chemical surfactants (11.73–18.75%) in n-alkanes C10–C30. Meanwhile, rhamnolipids exhibited a great degradation advantage of n-alkanes C13–C28, which was 1.22–30.55 times that of chemical surfactants. Compared to chemical surfactants, biosurfactants significantly upregulated the soil's biological functions, including soil conductivity (80.90–155.56%), and soil enzyme activities of lipase (90.31–497.10%), dehydrogenase (325.00–655.56%), core enzyme activities of petroleum hydrocarbon degradation, and quorum sensing between species. Biosurfactants significantly changed the composition of Pseudomonas, Citrobacter, Acidobacteriota, and Enterobacter at the genus level. Meanwhile, chemical surfactants had less influence on the bacterial community and interactions between species. Moreover, the biosurfactants enhanced the microbial interactions and centrality of petroleum hydrocarbon degraders in the community based on the network. Overall, this work provides a systematic comparison and understanding of the chemical- and bio-surfactants used in bioremediation. In the future, we intend to apply biosurfactants to practical petroleum hydrocarbon-contaminated fields to observe realistic remediation effects and compare their functional mechanisms.
Afficher plus [+] Moins [-]Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human
2022
Yu, Qiaoling | Feng, Tianshu | Yang, Jiawei | Su, Wanghong | Zhou, Rui | Wang, Yijie | Zhang, Hong | Li, Huan
The prevalence and transmission of antibiotic resistance genes (ARGs) and opportunistic pathogens in water environments can pose great threat to public health. However, the dissemination of ARGs and opportunistic pathogens from water environments to humans has been poorly explored. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to explore the seasonal distribution of ARGs and opportunistic pathogens in the Yellow River water (source water) and tap water, as well as their relationships with healthy humans at Lanzhou, China. Physiochemical analysis was applied to detect water quality parameters and heavy metal contents. The absolute abundance and diversity of ARGs in the Yellow River and tap water demonstrated distinct seasonal patterns. In winter, the Yellow river water had the highest ARG abundance and diversity, while tap water owned the lowest. Mobile genetic elements (MGEs) were the predominant driver of ARG profiles in both the Yellow river and tap water. Null model analysis showed that ARG assembly in the Yellow River was more influenced by stochastic processes than tap water and this was independent of seasons. Total organic carbon and arsenic contents exhibited positive correlations with many ARGs. Opportunistic pathogens Aeromonas and Pseudomonas may be potential hosts for ARGs. Approximately 80% of detected ARGs were shared between water samples and the human gut. These persistent ARGs could not be entirely eliminated through drinking water treatment processes. Thus, it is crucial to protect sources of tap water from anthropogenic pollution and improve water treatment technologies to reduce the dissemination of ARGs and ensure drinking-water biosafety for human health.
Afficher plus [+] Moins [-]Comparing with oxygen, nitrate simplifies microbial community assembly and improves function as an electron acceptor in wastewater treatment
2022
Zheng, Lei | Wang, Xue | Ren, Mengli | Yuan, Dongdan | Tan, Qiuyang | Xing, Yuzi | Xia, Xuefeng | Xie, En | Ding, Aizhong
Biochemical oxidation and reduction are key processes in treating biological wastewater and they require the presence of electron acceptors. The functional impact of electron acceptors on microbiomes provides strategies for improving the treatment efficiency. This research focused on two of the most important electron acceptors, nitrate and oxygen. Molecule ecological network, null model, and functional prediction based on high-throughput sequencing were used to analyze the microbiomes features and assembly mechanism. The results revealed nitrate via the homogeneous selection (74.0%) decreased species diversity, while oxygen via the homogeneous selection (51.1%) and dispersal limitation (29.6%) increased the complexity of community structure. Microbes that were more strongly homogeneously selected for assembly included polyphosphate accumulating organisms (PAOs), such as Pseudomonas and variovorax in the nitrate impacted community; Pseudomonas, Candidatus_Accumulibacter, Thermomonas and Dechloromonas, in the oxygen impacted community. Nitrate simplified species interaction and increased the abundance of functional genes involving in tricarboxylic acid cycle (TCA cycle), electron transfer, nitrogen metabolism, and membrane transport. These findings contribute to our knowledge of assembly process and interactions among microorganisms and lay a theoretical basis for future microbial regulation strategies in wastewater treatment.
Afficher plus [+] Moins [-]Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being
2022
Sharma, Pooja | Dutta, Deblina | Udayan, Aswathy | Nadda, Ashok Kumar | Lam, Su Shiung | Kumar, Sunil
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Afficher plus [+] Moins [-]