Affiner votre recherche
Résultats 1-10 de 750
Overhauling health effects perspectives.
1988
Schwebach G.H. | Cafaro D. | Egan J. | Grimes M. | Michael G.
Processing of fecal sludge to fertilizer pellets using a low-cost technology in Ghana
2013
Nikiema, Josiane | Cofie, Olufunke O. | Impraim, Robert | Adamtey, Noah
This paper describes a study that was aimed at optimizing the pelletization of fecal sludge-based fertilizers for agricultural use. The process developed is easy to implement and increases the marketability of the products while also addressing a serious health and environmental challenge. The study took place during the period 2011-2012 in Ghana. The fecal sludge, rich in nutrients and organic matter, was dried and used to produce five different fertilizers (i.e., four formulations of compost and one with gamma irradiated material). Each material was then pelletized using locally constructed machinery. Key operating parameters, such as moisture content (10-55% in mass), binder type (clay or starch) and concentration (0-10% in mass), were varied and their impacts on the characteristics of pellets (e.g., amount of fine materials generated, length distribution or stability of pellets, and pellet disintegration rate) were also followed. Given the low analyzing capabilities of developing countries, some simple analytical methods were developed and used to compare pellets produced under different conditions. The results confirmed that the addition of 3% of pregelatinized starch is recommended during pelletization of fecal sludge-based fertilizers. Applicable moisture contents were also identified per fertilizer type, and were found to comprise between 21 and 43%.
Afficher plus [+] Moins [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Little is known about the occurrence of emerging pollutants (EPs) in waters in the Middle East and North Africa (MENA) region despite the extensive use of low-quality water there. Available data dealing with the sources, occurrence and removal of EPs within the MENA region in different categories of water is collected, presented and analyzed in this literature review. According to the collected database, the occurrence and removal efficiency of EPs in the water matrix in the MENA region is available, respectively, for 13 and six countries of the 18 in total; no available data is registered for the rest. Altogether, 290 EPs have been observed in different water matrices across the MENA countries, stemming mainly from industrial effluents, agricultural practices, and discharge or reuse of treated wastewater (TWW). Pharmaceutical compounds figure among the most frequently reported compounds in wastewater, TWW, surface water, and drinking water. Nevertheless, pesticides are the most frequently detected pollutants in groundwater. Worryingly, 57 cases of EPs have been reported in different fresh and drinking waters, exceeding World Health Organization (WHO) and European Commission (EC) thresholds. Overall, pharmaceuticals, organic compounds, and pesticides are the most concerning EP groups. The review revealed the ineffectiveness of treatment processes used in the region to remove EPs. Negative removals of some EPs such as carbamazepine, erythromycin, and sulfamethoxazole were recorded, suggesting their possible accumulation or release during treatment. This underlines the need to set in place and strengthen control measures, treatment procedures, standards, and policies for such pollutants in the region.
Afficher plus [+] Moins [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Surface water quality, public health, and ecological risks in Bangladesh—a systematic review and meta-analysis over the last two decades
2023
Bilal, H. | Li, X. | Iqbal, Muhammad Shahid | Mu, Y. | Tulcan, R. X. S. | Ghufran, M. A.
Water quality has recently emerged as one of the utmost severe ecological problems being faced by the developing countries all over the world, and Bangladesh is no exception. Both surface and groundwater sources contain different contaminants, which lead to numerous deaths due to water-borne diseases, particularly among children. This study presents one of the most comprehensive reviews on the current status of water quality in Bangladesh with a special emphasis on both conventional pollutants and emerging contaminants. Data show that urban rivers in Bangladesh are in a critical condition, especially Korotoa, Teesta, Rupsha, Pashur, and Padma. The Buriganga River and few locations in the Turag, Balu, Sitalakhya, and Karnaphuli rivers have dissolvable oxygen (DO) levels of almost zero. Many waterways contain traces of NO3, NO2, and PO4-3 pollutants. The majority of the rivers in Bangladesh also have Zn, Cu, Fe, Pb, Cd, Ni, Mn, As, and Cr concentrations that exceed the WHO permissible limits for safe drinking water, while their metal concentrations exceed the safety threshold for irrigation. Mercury poses the greatest hazard with 90.91% of the samples falling into the highest risk category. Mercury is followed by zinc 57.53% and copper 29.16% in terms of the dangers they pose to public health and the ecosystem. Results show that a considerable percentage of the population is at risk, being exposed to contaminated water. Despite hundreds of cryptosporidiosis cases reported, fecal contamination, i.e., Cryptosporidium, is totally ignored and need serious considerations to be regularly monitored in source water.
Afficher plus [+] Moins [-]Metabolic syndrome and pesticides: A systematic review and meta-analysis
2022
Lamat, Hugo | Sauvant-Rochat, Marie-Pierre | Tauveron, Igor | Bagheri, Reza | Ugbolue, Ukadike C. | Maqdasi, Salwan | Navel, Valentin | Dutheil, Frédéric
The relation between pesticides exposure and metabolic syndrome (MetS) has not been clearly identified. Performing a systematic review and meta-analysis, PubMed, Cochrane Library, Embase, and ScienceDirect were searched for studies reporting the risk of MetS following pesticides exposure and their contaminants. We included 12 studies for a total of 6789 participants, in which 1981 (29.1%) had a MetS. Overall exposure to pesticides and their contaminants increased the risk of MetS by 30% (95CI 22%–37%). Overall organochlorine increased the risk of MetS by 23% (14–32%), as well as for most types of organochlorines: hexachlorocyclohexane increased the risk by 53% (28–78%), hexachlorobenzene by 40% (0.01–80%), dichlorodiphenyldichloroethylene by 22% (9–34%), dichlorodiphenyltrichloroethane by 28% (5–50%), oxychlordane by 24% (1–47%), and transnonchlor by 35% (19–52%). Sensitivity analyses confirmed that overall exposure to pesticides and their contaminants increased the risk by 46% (35–56%) using crude data or by 19% (10–29%) using fully-adjusted model. The risk for overall pesticides and types of pesticides was also significant with crude data but only for hexachlorocyclohexane (36% risk increase, 17–55%) and transnonchlor (25% risk increase, 3–48%) with fully-adjusted models. Metaregressions demonstrated that hexachlorocyclohexane increased the risk of MetS in comparison to most other pesticides. The risk increased for more recent periods (Coefficient = 0.28, 95CI 0.20 to 0.37, by year). We demonstrated an inverse relationship with body mass index and male gender. In conclusion, pesticides exposure is a major risk factor for MetS. Besides organochlorine exposure, data are lacking for other types of pesticides. The risk increased with time, reflecting a probable increase of the use of pesticides worldwide. The inverse relationship with body mass index may signify a stockage of pesticides and contaminants in fat tissue.
Afficher plus [+] Moins [-]Associations of air pollution with COVID-19 positivity, hospitalisations, and mortality: Observational evidence from UK Biobank
2022
Sheridan, Charlotte | Klompmaker, Jochem | Cummins, Steven | James, Peter | Fecht, Daniela | Roscoe, Charlotte
Individual-level studies with adjustment for important COVID-19 risk factors suggest positive associations of long-term air pollution exposure (particulate matter and nitrogen dioxide) with COVID-19 infection, hospitalisations and mortality. The evidence, however, remains limited and mechanisms unclear. We aimed to investigate these associations within UK Biobank, and to examine the role of underlying chronic disease as a potential mechanism. UK Biobank COVID-19 positive laboratory test results were ascertained via Public Health England and general practitioner record linkage, COVID-19 hospitalisations via Hospital Episode Statistics, and COVID-19 mortality via Office for National Statistics mortality records from March–December 2020. We used annual average outdoor air pollution modelled at 2010 residential addresses of UK Biobank participants who resided in England (n = 424,721). We obtained important COVID-19 risk factors from baseline UK Biobank questionnaire responses (2006–2010) and general practitioner record linkage. We used logistic regression models to assess associations of air pollution with COVID-19 outcomes, adjusted for relevant confounders, and conducted sensitivity analyses. We found positive associations of fine particulate matter (PM₂.₅) and nitrogen dioxide (NO₂) with COVID-19 positive test result after adjustment for confounders and COVID-19 risk factors, with odds ratios of 1.05 (95% confidence intervals (CI) = 1.02, 1.08), and 1.05 (95% CI = 1.01, 1.08), respectively. PM 2.5 and NO 2 were positively associated with COVID-19 hospitalisations and deaths in minimally adjusted models, but not in fully adjusted models. No associations for PM₁₀ were found. In analyses with additional adjustment for pre-existing chronic disease, effect estimates were not substantially attenuated, indicating that underlying chronic disease may not fully explain associations. We found some evidence that long-term exposure to PM₂.₅ and NO₂ was associated with a COVID-19 positive test result in UK Biobank, though not with COVID-19 hospitalisations or deaths.
Afficher plus [+] Moins [-]Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human
2022
Yu, Qiaoling | Feng, Tianshu | Yang, Jiawei | Su, Wanghong | Zhou, Rui | Wang, Yijie | Zhang, Hong | Li, Huan
The prevalence and transmission of antibiotic resistance genes (ARGs) and opportunistic pathogens in water environments can pose great threat to public health. However, the dissemination of ARGs and opportunistic pathogens from water environments to humans has been poorly explored. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to explore the seasonal distribution of ARGs and opportunistic pathogens in the Yellow River water (source water) and tap water, as well as their relationships with healthy humans at Lanzhou, China. Physiochemical analysis was applied to detect water quality parameters and heavy metal contents. The absolute abundance and diversity of ARGs in the Yellow River and tap water demonstrated distinct seasonal patterns. In winter, the Yellow river water had the highest ARG abundance and diversity, while tap water owned the lowest. Mobile genetic elements (MGEs) were the predominant driver of ARG profiles in both the Yellow river and tap water. Null model analysis showed that ARG assembly in the Yellow River was more influenced by stochastic processes than tap water and this was independent of seasons. Total organic carbon and arsenic contents exhibited positive correlations with many ARGs. Opportunistic pathogens Aeromonas and Pseudomonas may be potential hosts for ARGs. Approximately 80% of detected ARGs were shared between water samples and the human gut. These persistent ARGs could not be entirely eliminated through drinking water treatment processes. Thus, it is crucial to protect sources of tap water from anthropogenic pollution and improve water treatment technologies to reduce the dissemination of ARGs and ensure drinking-water biosafety for human health.
Afficher plus [+] Moins [-]Nexus between potentially toxic elements’ accumulation and seasonal/anthropogenic influences on mangrove sediments and ecological risk in Sundarbans, Bangladesh: An approach from GIS, self-organizing map, conditional inference tree and random forest models
2022
Hossain Bhuiyan, Mohammad Amir | Chandra Karmaker, Shamal | Saha, Bidyut Baran
Mangroves play a vital role in protecting the coastal community from the climate change effect and in the restoration of the coastal ecosystem. This research has been designed to determine the spatial and seasonal changes of potentially toxic elements’ (PTEs) concentration in sediments and their potential source contribution among the different human-driven processes in Sundarbans, Bangladesh. Different pollution evaluation indices, random forest (RF) model, conditional inference tree (CIT), self-organizing map (SOM), geographical information system (GIS), and principal component analysis (PCA) were used for the interpretation of sources and risk assessment of PTEs. The mean concentration of PTEs both in winter and monsoon seasons has fallen below the threshold effect level but exceeded the rare effect level of marine sediments quality standards. Results showed that the PTEs were significantly enriched (EF > 1.00 < 70.00) in sediments, whereas the Cd enrichment (7.00% samples) was very alarming (EF = 60–70). Except for Zn and Cd, other PTEs were enriched in 30–60% samples. The highest geoaccumulation and contamination factors for Cd were observed in 46–72% of samples. The ecological risk (ER) factors showed similar results where Cd showed strong to very strong factors (ER = 110–2218) in 80% of samples. The CIT explained the natural/geogenic and anthropogenic sources of pollution, where the higher CIT values for Cd indicated industrial, aquaculture, and coal-based thermal powerplant. The RF model provided that shrimp firms, power plants, industry, and seaport were recognized as the influential sources for Zn, Pb, Cr, Cd, and As in sediments. Though Pb and As were found as the most significant pollutants, Cd was identified as a severe threat to ecology and public health. Based on CIT, RF, SOM and PCA the order of PTEs in mangroves sediment were:industrial/urban > aquaculture/shrimpfirm > powerplant > seaportoperation > tourism > geogenic/natural. The present study will help the policymakers for effective and sustainable management of the mangrove ecosystem.
Afficher plus [+] Moins [-]