Affiner votre recherche
Résultats 1-10 de 386
Mechanisms of Trace Metal Elements Removal from Water using Low-Cost Biochar Adsorbents: A mini review
2024
Srivastav, Arun Lal | Rani, Lata | Sharda, Prakriti | Sharma, Ajay
Trace metal elements are toxic to the environment and human health and can be removed from water through adsorption. Development of low-cost adsorbents would always been a matter of achievement of every adsorption study as usually many adsorbents were found to be expensive in nature. In this regard, biochar adsorbents gained significant attention due to high adsorption capacity, low-cost and environmental sustainability. Pyrolysis is used to produce biochar adsorbents at varying temperature ranged from 300°C-700°C. The adsorption capacities of palm fiber biochar adsorbents are remarkable which was found around ~198 mg/g for cadmium removal. However, bamboo-based biochar had 868 mg/g of adsorption capacity for arsenate removal. This review aims to provide the current discusses the sources and impacts of trace metal elements in water along with properties of biochar including its composition, surface area, pore structure, and surface functional groups. Further, various types of biomasses have also been mentioned for producing biochar such as agricultural wastes, food wastes, forestry residues, etc. The paper also discusses the different types of mechanisms involved in the adsorption of heavy metal biochar adsorbents like electrostatic attraction, ion exchange, surface complexation etc.
Afficher plus [+] Moins [-]Characterization and Application of Biochar from spent fermentation sludge of coir wastes in removing Malachite green from effluent water
2022
Sudhakaran, Ajith | Rajan, Revathy | Ravindranath, Anita
Lignin rich solid residues after saccharification during the production of ethanol from lignocellulosic substrates are major concern during past times. These solid residues left after the saccharification of Coir pith and Bit fiber waste are pyrolysed at 350 oC to yield biochar, which has been characterized and its potential for removal of Malachite Green, a dye present in the effluents from coir product manufacturing units are studied. FTIR and XRD spectra revealed the diverse functional groups present on the surface of biochar. SEM images showed the porous structure of the biochar. A maximum dye removal efficiency of 99.5% was achieved using Coir Pith Biochar (1 %) within 24 hours of treatment at a dye concentration of 100 mg/l. The removal efficiency was 99.4 % using Bit Fiber Biochar (0.8 %) in the same treatment period. The efficiency of removal was enhanced on adjusting the pH to 4 at which the dye removal of 99.6 % and 99.7 % was achieved using Bit fiber biochar and Coir pith biochar respectively. The residence time was significantly reduced to 2 and 4 hours respectively for bit fiber and coir pith biochar at pH 4 and hence the produced biochars are cost effective adsorbents for removal of dyeing effluents in wastewater. The adsorption fits into pseudo-second order kinetics and is well described by langmuir isotherm model. This would also facilitate the sustainable use of spent solid substrates left after lignocellulosic ethanol production in a more economical way.
Afficher plus [+] Moins [-]Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks
2022
Ren, Helong | Su, Peixin | Kang, Wei | Ge, Xiang | Ma, Shengtao | Shen, Guofeng | Chen, Qiang | Yu, Yingxin | An, Taicheng
Soil polycyclic aromatic hydrocarbons (PAHs) generated from industrial processes are highly spatially heterologous, with limited quantitative studies on their main influencing factors. The present study evaluated the soil PAHs in three types of industrial parks (a petrochemical industrial park, a brominated flame retardant manufacturing park, and an e-waste dismantling park) and their surroundings. The total concentrations of 16 PAHs in the parks were 340–2.43 × 10³, 26.2–2.63 × 10³, and 394–2.01 × 10⁴ ng/g, which were significantly higher than those in the surrounding areas by 1–2 orders of magnitude, respectively. The highest soil PAH contamination was observed in the e-waste dismantling park. Nap can be considered as characteristic pollutant in the petrochemical industrial park, while Phe in the flame retardant manufacturing park and e-waste dismantling park. Low molecular weight PAHs (2–3 rings) predominated in the petrochemical industrial park (73.0%) and the surrounding area of brominated flame retardant manufacturing park (80.3%). However, high molecular weight PAHs (4–6 rings) were enriched in the other sampling sites, indicating distinct sources and determinants of soil PAHs. Source apportionment results suggested that PAHs in the parks were mainly derived from the leakage of petroleum products in the petroleum manufacturing process and pyrolysis or combustion of fossil fuels. Contrarily, the PAHs in the surrounding areas could have been derived from the historical coal combustion and traffic emissions. Source emissions, wind direction, and local topography influenced the PAH spatial distributions.
Afficher plus [+] Moins [-]Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals
2022
Li, Wenjin | Meng, Jun | Zhang, Yule | Haider, Ghulam | Ge, Tida | Zhang, Haibo | Li, Zhangtao | Yu, Yijun | Shan, Shengdao
Co-pyrolysis of sewage sludge and plastics have been utilized for producing biochars as a strategy to fix plastic pollution. However, comparative studies on the characteristics and environmental risk of heavy metals in biochars obtained by the co-pyrolysis of sludge and microplastic with/without metal additives are seldom. Here we demonstrated the effects of simulated co-pyrolysis (at 400 °C) of sewage sludge and metal-free or metal-loaded polyvinyl chloride (PVC) microplastics at different mass ratios (1:0, 19:1, 3:1, 1:3, sewage sludge: PVC (w/w)) respectively. Results revealed that co-pyrolysis of metal-loaded PVC and sewage sludge resulted in higher electrical conductivity, ash content, and an acidic pH of biochars as compared to the co-pyrolysis of metal-free PVC and sewage sludge. Addition of metal-loaded PVC increased total concentrations of calcium (Ca), magnesium (Mg), cadmium (Cd), and lead (Pb) in biochars, but reduced the bioavailability of Cd, chromium (Cr), nickel (Ni), and zinc (Zn) in biochars. Analysis of chemical speciation showed that heavy metals (except Pb) in biochars derived from co-pyrolysis of sewage sludge and metal-loaded PVC had higher percentage of more stable fraction (residual fraction) and lower potential ecological risk index (RI) value. S1AP3 (sludge: metal-loaded PVC = 1:3) biochar had the lowest environmental risk based on RI value (14.41). To sum up the present study suggests that the addition of metal-loaded PVC microplastic in sewage sludge had a positive impact on the immobilization of heavy metals during co-pyrolysis process.
Afficher plus [+] Moins [-]Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment
2022
De Bhowmick, Goldy | Briones, Rowena M. | Thiele-Bruhn, Sören | Sen, Ramkrishna | Sarmah, Ajit K.
Batch sorption of metformin hydrochloride (MET) onto a specially designed biochar mix consisting of both macro (MAC) and micro (MIC) algae, rice husk and pine sawdust was conducted. Pyrolysis of both MAC and MIC algae mixture was done followed by chemical activation with hydrogen-peroxide. Additionally, sorption of MET under the influence of pH was separately investigated. Batch studies of isotherms were well described by Freundlich model with high non-linearity and Freundlich exponent values ranged anywhere from 0.12 to 1.54. Heterogeneity of MET adsorption to the bonding sites was attributed to the surface functional groups of the modified biochar. Amongst the four biochars, the activated macroalgae biochar (MACAC) and microalgae biochar (MICAC) depicted favourable adsorption of MET with maximum adsorption at pH 7. Up to 76% of MET removal from the environment was obatained using the MACAC biochar. Scanning electron micrographs coupled with energy dispersive X-ray, as well as elemental analyses confirmed formation of oxygen containing surface functional groups due to activation strengthening chemisorption as the main sorption mechanism. Further, Fourier transform infra-red spectroscopy and other surface functional group analyses along with Zeta potential measurements reinforced our proposed sorption mechanism. Lowest zeta potential observed at pH 7 enhanced the electrostatic force of attraction for both the biochars. Negative zeta potential value of the biochars under different pH indicated potential of the biochars to adsorb other positively charged contaminants. From a techno-economic perspective, capital expenditure cost is not readily available, however, it is envisaged that production of pyrolyzed biochar from algal biomass could make the process economically attractive especially when the biochar could be utilised for high-end applications.
Afficher plus [+] Moins [-]Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms
2022
Zou, Mengyuan | Tian, Weijun | Chu, Meile | Gao, Huizi | Zhang, Dantong
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L⁻¹, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g⁻¹ at 35 °C with adsorbent dosage of 0.4 g L⁻¹, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g⁻¹, and 44.7 and 59.0 mg g⁻¹, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K⁺ and Ca²⁺ (0.02–0.1 mol L⁻¹). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Afficher plus [+] Moins [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Afficher plus [+] Moins [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
Afficher plus [+] Moins [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
Afficher plus [+] Moins [-]Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics
2022
Hung, Chang-Mao | Chen, Chiu-Wen | Huang, Jinbao | Dong, Cheng-Di
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B–N, B–C, and B₂O₃ species). Radical quenching tests revealed SO₄•⁻, HO•, and ¹O₂ being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR–CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR–CAOP combined with bioprocesses for removing STZ from aqueous environments.
Afficher plus [+] Moins [-]