Affiner votre recherche
Résultats 1-10 de 19
Effects of dietary aluminum on reproduction in Japanese quail Coturnix coturnix japonica.
1990
Wolff B.G. | Phillips R.E.
Crosstalk between unfolded protein response and Nrf2-mediated antioxidant defense in Di-(2-ethylhexyl) phthalate-induced renal injury in quail (Coturnix japonica)
2018
Zhao, Yi | Du, Zheng-Hai | Talukder, Milton | Lin, Jia | Li, Xue-Nan | Zhang, Cong | Li, Jin-Long
The widely used Di-(2-ethylhexyl) phthalate (DEHP) has been reported to exhibit ubiquitous environmental and global health hazards. The bioaccumulation and environmental persistence of DEHP can cause serious health hazards in wildlife animals and human. However, DEHP-induced nephrotoxicity in bird is remained unknown. Thus, this study explored the related mechanism of DEHP nephrotoxicity in quail. For this purpose, quail were exposed with DEHP at doses of 0, 250, 500, and 1000 mg/kg body weight daily by gavage administration for 45 days. The results showed that DEHP exposure induced renal injury, oxidative stress, and endoplasmic reticulum (ER) degeneration. Low level DEHP (250 mg/kg) exposure inhibited Nrf2 signaling pathway and induced renal injury via oxidative stress and suppressed the unfolded protein response (UPR) signaling pathway and induced ER stress in the kidney. But surprisingly, high level DEHP (500 mg/kg and 1000 mg/kg) exposure activated Nrf2 and UPR signaling pathways and protected kidney, but they still couldn't resist the toxicity of DEHP. Our study demonstrated that DEHP-induced nephrotoxicity in quail was associated with activating Nrf2-mediated antioxidant defense response and UPR signaling pathway.
Afficher plus [+] Moins [-]Di-(2-ethylhexyl) phthalate induced nephrotoxicity in quail (Coturnix japonica) by triggering nuclear xenobiotic receptors and modulating the cytochrome P450 system
2020
Wang, Hui | Guan, Tian-Qi | Sun, Jin-Xu | Talukder, Milton | Huang, Yue-Qiang | Li, Yan-Hua | Li, Jin-Long
Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer that is mainly used in the production of polyvinyl alcohol-containing chloride products, has attracted attention due to potential threats to human health and the environment. Nevertheless, knowledge of DEHP-induced nephrotoxicity is still limited. To explore the mechanism of DEHP-induced nephrotoxicity, quail were treated with 0, 250, 500 and 1000 mg/kg DEHP by oral gavage for 45 days. Based on the results of histopathological analysis, DEHP exposure induced a disorganized renal structure, a partially dilated glomerulus and an atrophied Bowman’s space. Renal tubular epithelial cells were unclear, and swelling of columnar epithelial cells was observed, suggesting that DEHP exposure caused renal disease and renal injury. Notably, DEHP interfered with the homeostasis of cytochrome P450 systems (CYP450s) by increasing the activities or contents of CYP450s (total CYP450, Cyt b5, ERND, APND, AH and NCR). The expression levels of certain CYP450 isoforms (CYP1A, CYP1B, CYP2C, CYP2D, CYP2J and CYP3A) were significantly downregulated in the kidney in DEHP-treated quail. Furthermore, DEHP induced the expression of nuclear receptors (AHR, CAR and PXR) in a dose-dependent manner. The results of this study suggested that DEHP-induced nephrotoxicity in quail was associated with the induction of nuclear xenobiotic receptor (NXR) responses and interference with CYP450 homeostasis. In conclusion, all data indicated that DEHP induced nephrotoxicity by triggering NXRs and modulating the cytochrome P450 system. The results of this study provide a new basis for understanding the nephrotoxicity of DEHP.
Afficher plus [+] Moins [-]Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix)
2019
Zhang, Cong | Li, Huixin | Qin, Lei | Ge, Jing | Qi, Zhang | Talukder, Milton | Li, Yan-Hua | Li, Jin-Long
Atrazine (ATR), one of the most widely used pesticides in agricultural production, are gradually concerned due to potential ecosystem and health risks. Further, the induction of ATR nephrotoxicity and detoxification response is still unknown. To evaluate ATR-induced nephrotoxicity, quails were treated with 0, 50, 250 or 500 mg/kg ATR by gavage administration for 45 days. Histopathology indicated that ATR exposure caused renal tubular epithelial cell swelling and endoplasmic reticulum degeneration, suggesting that ATR exposure causes renal impairment even renal diseases. Notably, ATR interfered cytochrome P450 system (CYP450s) homeostasis by enhancing contents or activities of CYP450s (total CYP450, Cyt b5, AH, APND, NCR and ERND) and the expression of CYP450 isoforms (CYP1A, CYP1B, CYP2C and CYP3A). ATR triggered phase II detoxifying reaction, reflected by the elevated GSH level, GST activity and the up-regulation of GST isoforms (GSTa, GSTa3 and GSTt1) and GSH synthetase (GCLC). Moreover, ABC transporters were activated to expel ATR from the body by increasing expression of MRP1 and P-GP gene. Accompanying these alterations, the nuclear receptors (AHR, CAR and PXR) were activated by ATR in a dose-dependent manner. Analysis results of present study demonstrated that the induction of phase II detoxifying enzyme system and ABC transporters could be modulated by nuclear receptors response and CYP450s disturbance in low-dose ATR-treated quail. In conclusion, all data suggested that nuclear receptors AHR-mediated detoxification pathway was involved in ATR-induced nephrotoxicity. These results provided new evidence about the nephrotoxic effects of ATR on the response of biotransformation and detoxification system.
Afficher plus [+] Moins [-]Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks
2019
Guigueno, M.F. | Head, J.A. | Letcher, R.J. | Karouna-Renier, N. | Peters, L. | Hanas, A.M. | Fernie, K.J.
Triphenyl phosphate (TPHP; CAS # 115-86-6), a commonly used plasticizer and flame retardant, has been reported in wild birds and identified as a potential high-risk chemical. We exposed Japanese quail (Coturnix japonica) by in ovo injection, and once hatched, orally each day for 5 days to safflower oil (controls) or TPHP dissolved in vehicle at low (5 ng TPHP/g), mid (50 ng TPHP/g), or high (100 ng TPHP/g) nominal TPHP doses. The low TPHP dose reflected concentrations in wild bird eggs, with mid and high doses 10x and 20x greater to reflect potential increases in environmental TPHP concentrations in the future. Despite no effects on mRNA expression in thyroid-related genes, TPHP exposure enhanced thyroid gland structure in high TPHP males, but in females, suppressed thyroid gland structure and activity (all TPHP females), and circulating free triiodothyronine (high TPHP females only). Consistent with thyroidal changes, and compared to controls, mid and high TPHP chicks experienced significantly reduced resting metabolic rate (≤13%) and growth (≤53%); mid TPHP males and high TPHP females were significantly smaller. The observed thyroidal effects and suppressed growth and metabolic rate of the quail chicks suggest that TPHP may adversely affect the health of wild birds.
Afficher plus [+] Moins [-]Toxicological effects of deltamethrin on quail cerebrum: Weakened antioxidant defense and enhanced apoptosis
2021
Li, Jiayi | Jiang, Huijie | Wu, Pengfei | Li, Siyu | Han, Bing | Yang, Qingyue | Wang, Xiaoqiao | Han, Biqi | Deng, Ning | Qu, Bing | Zhang, Zhigang
Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.
Afficher plus [+] Moins [-]Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway
2020
Han, Bing | Lv, Zhanjun | Zhang, Xiaoya | Lv, Yueying | Li, Siyu | Wu, Pengfei | Yang, Qingyue | Li, Jiayi | Qu, Bing | Zhang, Zhigang
Deltamethrin (DLM) is an important member of the pyrethroid pesticide family, and its widespread use has led to serious environmental and health problems. Exposure to DLM causes pathological changes in the liver of animals and humans and can lead to liver fibrosis. However, the mechanism of DLM-induced liver fibrosis remains unclear. Therefore, to address its potential molecular mechanisms, we used both in vivo and in vitro methods. Quails were treated in vivo by intragastric administration of different concentrations of DLM (0, 15, 30, or 45 mg kg⁻¹), and the chicken liver cancer cell line LMH was treated in vitro with various doses of DLM (0, 50, 200, or 800 μg mL⁻¹). We found that DLM treatment in vivo induced liver fibrosis in a dose-dependent manner through the promotion of oxidative stress, activation of transforming growth factor-β1 (TGF-β1) and phosphorylation of Smad2/3. Treatment of LMH cells with different concentrations of DLM similarly induced oxidative stress and also decreased cell viability. Collectively, our study demonstrates that DLM-induced liver fibrosis in quails occurs via activation of the TGF-β1/Smad signaling pathway.
Afficher plus [+] Moins [-]Di (2-ethyl hexyl) phthalate (DEHP)-induced spleen toxicity in quail (Coturnix japonica) via disturbing Nrf2-mediated defense response
2019
Yu, Lei | Li, Hui-Xin | Guo, Jian-Ying | Huang, Yue-Qiang | Wang, Hui | Talukder, Milton | Li, Jin-Long
Di(2-ethylhexyl) phthalate (DEHP), as a widely used plasticizer, is reported to have widespread environmental and global health hazards. Trace amounts of phthalates in the environment are sufficient to disrupt ecological balance and affect human health. However, DEHP-induced splenic toxicity remains in an unknown state. Therefore, to explore the mechanism of DEHP-induced splenic toxicity, male quail were employed with 0, 250, 500 and 750 mg/kg body weight DEHP by daily gastric perfusion for 45 days. Notably, splenic corpuscular border and cell gap enlargement were observed in the spleen tissue of DEHP-exposed quail under the histopathological analysis. Furthermore, DEHP induced dysregulation of oxidative stress markers by increasing malondialdehyde (MDA) content and decreasing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities. Low concentration of DEHP (≤250 mg/kg) exposure suppressed nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, while high concentration of DEHP (≥500 mg/kg) exposure activated Nrf2-mediated defense response. DEHP induced splenic oxidative stress via interfering Nrf2 signal pathway and altering the transcription of its downstream genes. In conclusion, this study suggested that DEHP induced splenic toxicity.
Afficher plus [+] Moins [-]A novel nuclear xenobiotic receptors (AhR/PXR/CAR)-mediated mechanism of DEHP-induced cerebellar toxicity in quails (Coturnix japonica) via disrupting CYP enzyme system homeostasis
2017
Du, Zheng-Hai | Xia, Jun | Sun, Xiao-Chen | Li, Xue-Nan | Zhang, Cong | Zhao, Hua-Shan | Zhu, Shi-Yong | Li, Jin-Long
Di-(2-ethylhexyl)-phthalate (DEHP) is causing serious health hazard in wildlife animal and human through environment and food chain, including the effect of brain development and impacted neurobehavioral outcomes. However, DEHP exposure caused cerebellar toxicity in bird remains unclear. To evaluate DEHP-exerted potential neurotoxicity in cerebellum, male quails were exposed with 0, 250, 500 and 750 mg/kg BW/day DEHP by gavage treatment for 45 days. Neurobehavioral abnormality and cerebellar histopathological alternation were observed in DEHP-induced quails. DEHP exposure increased the contents of total Cytochrome P450s (CYPs) and Cytochrome b5 (Cyt b5) and the activities of NADPH-cytochrome c reductase (NCR) and aniline-4-hydeoxylase (AH) in quail cerebellum. The expression of nuclear xenobiotic receptors (NXRs) and the transcriptions of CYP enzyme isoforms were also influenced in cerebellum by DEHP exposure. These results suggested that DEHP exposure caused the toxic effects of quail cerebellum. DEHP exposure disrupted the cerebellar CYP enzyme system homeostasis via affecting the transcription of CYP enzyme isoforms. The cerebellar P450arom and CYP3A4 might be biomarkers in evaluating the neurotoxicity of DEHP in bird. Finally, this study provided new evidence that DEHP-induced toxic effect of quail cerebellum was associated with activating the NXRs responses and disrupting the CYP enzyme system homeostasis.
Afficher plus [+] Moins [-]Atrazine triggers developmental abnormality of ovary and oviduct in quails (Coturnix Coturnix coturnix) via disruption of hypothalamo-pituitary-ovarian axis
2015
Qin, Lei | Du, Zheng-Hai | Zhu, Shi-Yong | Li, Xue-Nan | Li, Nan | Guo, Jing-Ao | Li, Jin-Long | Zhang, Ying
There has been a gradual increase in production and consumption of atrazine (ATR) in agriculture to meet the population rising demands. Female reproduction is necessary for growth and maintenance of population. However, ATR impact on females and particularly ovarian developmental toxicity is less clear. The aim of this study was to define the pathways by which ATR exerted toxic effects on ovarian development of ovary and hypothalamo-pituitary-ovarian (HPO) axis. Female quails were dosed by oral gavage from sexual immaturity to maturity with 0, 50, 250 and 500 mg ATR/kg/d for 45 days. ATR had no effect on mortality but depressed feed intake and growth and influenced the biochemical parameters. Notably, the arrested development of ovaries and oviducts were observed in ATR-exposed quails. The circulating concentrations of E2, P, LH and PRL were unregulated and FSH and T was downregulated in ATR-treated quails. The mRNA expression of GnRH in hypothalamo and LH in pituitary and FSH in ovary was downregulated significantly by ATR exposure and FSH and PRL in pituitary were upregulated. ATR exposure upregulated the level of P450scc, P450arom, 3β-HSD and 17β-HSD in ovary and downregulated ERβ expression in female quails. However, ATR did not change ERα expression in ovary. This study provides new insights regarding female productive toxicology of ATR exposure. Ovary and oviduct in sexually maturing females were target organs of ATR-induced developmental toxicity. We propose that ATR-induced developmental abnormality of ovary and oviduct is associated with disruption of gonadal hormone balance and HPO axis in female quails.
Afficher plus [+] Moins [-]