Affiner votre recherche
Résultats 1-5 de 5
Reduced soil water availability did not protect two competing grassland species from the negative effects of increasing background ozone
2012
Wagg, Serena | Mills, Gina | Hayes, Felicity | Wilkinson, Sally | Cooper, David | Davies, William J.
Two common (semi-) natural temperate grassland species, Dactylis glomerata and Ranunculus acris, were grown in competition and exposed to two watering regimes: well-watered (WW, 20–40% v/v) and reduced-watered (RW, 7.5–20% v/v) in combination with eight ozone treatments ranging from pre-industrial to predicted 2100 background levels. For both species there was a significant increase in leaf damage with increasing background ozone concentration. RW had no protective effect against increasing levels of ozone-induced senescence/injury. In high ozone, based on measurements of stomatal conductance, we propose that ozone influx into the leaves was not prevented in the RW treatment, in D. glomerata because stomata were a) more widely open than those in less polluted plants and b) were less responsive to drought. Total seasonal above ground biomass was not significantly altered by increased ozone; however, ozone significantly reduced root biomass in both species to differing amounts depending on watering regime.
Afficher plus [+] Moins [-]Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris
2013
Wagg, Serena | Mills, Gina | Hayes, Felicity | Wilkinson, Sally | Davies, William J.
Two mesotrophic grassland species, Ranunculus acris and Dactylis glomerata were exposed to a range of ozone treatments (16.2–89.5 ppb 24 h mean) and two watering regimes under naturally fluctuating photosynthetically active radiation (PAR), vapour pressure deficit (VPD) and temperature. Stomatal conductance was measured throughout the experiments, and the combined data set (>1000 measurements) was analysed for effects of low and high ozone on responses to environmental stimuli. We show that when D. glomerata and R. acris were grown in 72.6–89.5 ppb ozone the stomata consistently lose the ability to respond, or have reduced response, to naturally fluctuating environmental conditions in comparison to their response in low ozone. The maximum stomatal conductance (gmax) was also significantly higher in the high ozone treatment for D. glomerata. We discuss the hypotheses for the reduced sensitivity of stomatal closure to a changing environment and the associated implications for ozone flux modelling.
Afficher plus [+] Moins [-]Enhanced nitrogen deposition exacerbates the negative effect of increasing background ozone in Dactylis glomerata, but not Ranunculus acris
2011
Wyness, Kirsten | Mills, Gina | Jones, Laurence | Barnes, Jeremy D. | Jones, D. L. (Davey L.)
The combined impacts of simulated increased nitrogen (N) deposition (75kgNha⁻¹yr⁻¹) and increasing background ozone (O₃) were studied using two mesotrophic grassland species (Dactylis glomerata and Ranunculus acris) in solardomes, by means of eight O₃ treatments ranging from 15.5ppb to 92.7ppb (24h average mean). A–Cᵢ curves were constructed for each species to gauge effects on photosynthetic efficiency and capacity, and effects on biomass partitioning were determined after 14 weeks. Increasing the background concentration of O₃ reduced the healthy above ground and root biomass of both species, and increased senesced biomass. N fertilisation increased biomass production in D. glomerata, and a significantly greater than additive effect of O₃ and N on root biomass was evident. In contrast, R. acris biomass was not affected by high N. The study shows the combined effects of these pollutants have differential implications for carbon allocation patterns in common grassland species.
Afficher plus [+] Moins [-]Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range
2016
Juárez, Andrea | Arribére, María A. | Arcagni, Marina | Williams, Natalia | Rizzo, Andrea | Ribeiro Guevara, Sergio
Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.
Afficher plus [+] Moins [-]Monitoring heavy metal pollution by aquatic plants : A systematic study of copper uptake
2012
Materazzi, S. | Canepari, S. | Aquili, S.
INTRODUCTION: The copper bioaccumulation by the floating Lemna minor and by the completely submerged Ranunculus tricophyllus as a function of exposure time and copper concentration was studied, with the aim of proposing these species as environmental biosensors of the water pollution. RESULTS: The results show that both these aquatic angiosperms are good indicators of copper pollution because the copper uptake is the only function of metal concentration (water pollution). CONCLUSION: Uptake behavior is reported as a function of the time and concentration, based on the results of a 3-year study. Kinetic evaluations are proposed.
Afficher plus [+] Moins [-]