Affiner votre recherche
Résultats 1-10 de 89
Distribution of rare earth elements (REEs) and their roles in plant growth: A review
2022
Tao, Yue | Shen, Lu | Feng, Chong | Yang, Rongyi | Qu, Jianhua | Ju, Hanxun | Zhang, Ying
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
Afficher plus [+] Moins [-]Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling
2022
Wang, Siyu | Xiong, Zhunan | Wang, Lingqing | Yang, Xiao | Yan, Xiulan | Li, You | Zhang, Chaosheng | Liang, Tao
Dismantling and recycling e-waste has been recognized as a potential emission source of rare earth elements (REEs). However, the presence of REEs in typical regional soils has yet to be studied. Given the potential health implications of such soil contamination, it is vital to study the characteristics, spatial distribution, and pollution level of REEs caused by e-waste dismantling as well as determine the influencing mechanism. This study focused on Guiyu Town as an example site, which is a typical e-waste dismantling base. From the site, 39 topsoil samples of different types were collected according to grid distribution points. Soil profiles were also collected in the dismantling and non-dismantling areas. The REE characteristic parameters showed that the REE distribution was abnormal and was affected by multiple factors. The results of the integrated pollution index showed that approximately 61.5% of soil samples were considered to be lightly polluted. Spatial distribution and correlation analysis showed that hot spots of REE-polluted soil coincided with known, main pollution sources. Moreover, there was a significant negative correlation (p ≤0.05) between the REE concentration and the distance from the pollution source. E-waste disassembly and recycling greatly affect the physical and chemical properties of the surrounding soil as well as downward migration areas. In the disassembly area, REE accumulated more easily in the surface layer (0–20 cm). Geographical detector results showed that distance factor was the main contribution factor for both light rare earth elements (LREE) and heavy rare earth element (HREE) (q = 34.59% and 53.33%, respectively). REE distribution in soil was nonlinear enhanced by different factors. Taken together, these results showed that e-waste disassembling and recycling not only directly affected the spatial distribution of REEs, but that their distribution was also affected by land use type and soil properties.
Afficher plus [+] Moins [-]Do toxicokinetic and toxicodynamic processes hold the same for light and heavy rare earth elements in terrestrial organism Enchytraeus crypticus?
2020
Huang, Xueying | He, Erkai | Qiu, Hao | Zhang, Lulu | Tang, Yetao | Zhao, Chunmei | Li, Min | Xiao, Xue | Qiu, Rongliang
The widespread use of rare earth elements (REEs) in numerous sectors have resulted in their release into the environment. Existing knowledge about the effects of REEs were acquired mainly based on toxicity tests with aquatic organisms and a fixed exposure time, Here, the dynamic accumulation and toxicity of REEs (La, Ce, and Gd) in soil organism Enchytraeus crypticus were determined and modeled by a first-order one-compartment model and a time-toxicity logistic model, respectively. Generally, the accumulation and toxicity of REEs were both exposure level- and time-dependent. The overall uptake rate constants were 2.97, 2.48, and 2.38 L kg⁻¹d⁻¹ for La, Ce, and Gd, respectively. The corresponding elimination rate constants were 0.99, 0.78, and 0.56 d⁻¹, respectively. The worms exhibited faster uptake and elimination ability for light REEs (La and Ce) than for heavy REEs (Gd). For all three REEs, the LC50 values based on exposure concentrations decreased with time and reached ultimate values after approximately 10 d exposure. The estimated ultimate LC50 values (LC50∞) were 279, 334, and 358 mg L⁻¹ for Ce, Gd, and La, respectively. When expressed as body concentration, the LC50ᵢₙₜₑᵣ value was almost constant with time, demonstrating that internal body concentration could be a better indicator of dynamic toxicity of REEs than external dose. This study highlights that specific REE and exposure time should be taken into account in accurately assessing risk of REEs.
Afficher plus [+] Moins [-]Consistent trace element distribution and mercury isotopic signature between a shallow buried volcanic-hosted epithermal gold deposit and its weathered horizon
2020
Yin, Runsheng | Pan, Xin | Deng, Changzhou | Sun, Guangyi | Kwon, Sae Yun | Lepak, Ryan F. | Hurley, James P.
Trace elements and Hg isotopic composition were investigated in mineralized rocks, barren rocks, and mineral soils in the Xianfeng prospect, a shallow buried epithermal gold deposit in northeastern China, to understand whether this deposit has left a diagnostic geochemical fingerprint to its weathered horizon. All the rocks and soils display congruent patterns for immobile elements (large ion lithophile elements, high field strength elements, and rare earth elements), which reflect the subduction-related tectonic setting. Both mineralized rocks and soils showed common enrichment of elemental suite As–Ag–Sb–Hg, suggesting that the Xianfeng gold deposit has released these elements into its weathered horizon. Similar mercury isotopic composition was observed between mineralized rocks (δ²⁰²Hg: −0.21 ± 0.70‰; Δ¹⁹⁹Hg: −0.02 ± 0.12‰; 2SD) and barren rocks (δ²⁰²Hg: −0.46 ± 0.48‰; Δ¹⁹⁹Hg: 0.00 ± 0.10‰; 2SD), suggesting that mercury in the Xianfeng deposit is mainly derived from the magmatic rocks. Mineralized soils (δ²⁰²Hg: −0.44 ± 0.60‰; −0.03 ± 0.14‰; 2SD) and barren soils (δ²⁰²Hg: −0.54 ± 0.68‰; Δ¹⁹⁹Hg: −0.05 ± 0.14‰; 2SD) displayed congruent Hg isotopic signals to the underlying rocks, suggesting limited Hg isotope fractionation during the release of Hg from ore deposit to soils via weathering. This study reveals evidence of a simple and direct geochemical link between this shallow buried hydrothermal deposit and its weathered horizon, and highlights that the weathering of shallow-buried hydrothermal gold deposits can release a substantial amount of heavy metals (e.g. Hg, As and Sb) to surface soil.
Afficher plus [+] Moins [-]A critical review on remediation, reuse, and resource recovery from acid mine drainage
2019
Naidu, Gayathri | Ryu, Seongchul | Thiruvenkatachari, Ramesh | Choi, Youngkwon | Jeong, Sanghyun | Vigneswaran, Saravanamuthu
Acid mine drainage (AMD) is a global environmental issue. Conventionally, a number of active and passive remediation approaches are applied to treat and manage AMD. Case studies on remediation approaches applied in actual mining sites such as lime neutralization, bioremediation, wetlands and permeable reactive barriers provide an outlook on actual long-term implications of AMD remediation. Hence, in spite of available remediation approaches, AMD treatment remains a challenge. The need for sustainable AMD treatment approaches has led to much focus on water reuse and resource recovery. This review underscores (i) characteristics and implication of AMD, (ii) remediation approaches in mining sites, (iii) alternative treatment technologies for water reuse, and (iv) resource recovery. Specifically, the role of membrane processes and alternative treatment technologies to produce water for reuse from AMD is highlighted. Although membrane processes are favorable for water reuse, they cannot achieve resource recovery, specifically selective valuable metal recovery. The approach of integrated membrane and conventional treatment processes are especially promising for attaining both water reuse and recovery of resources such as sulfuric acid, metals and rare earth elements. Overall, this review provides insights in establishing reuse and resource recovery as the holistic approach towards sustainable AMD treatment. Finally, integrated technologies that deserve in depth future exploration is highlighted.
Afficher plus [+] Moins [-]The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y3+ and Ce3+) to Triticum aestivum
2019
Gong, Bing | He, Erkai | Qiu, Hao | Li, Jianqiu | Ji, Jie | Peijnenburg, Willie J.G.M. | Liu, Yang | Zhao, Ling | Cao, Xinde
There is a lack of appropriate models to delineate the toxicity of rare earth elements (REEs) while taking into account the factors that affect bioavailability. Here, standardized wheat (Triticum aestivum L.) root elongation tests were conducted to examine the impact of exposure conditions (i.e., varying Ca, Mg, Na, K and pH levels) on Y and Ce toxicity. Cation competition and electrostatic theory were examined for their applicability in explaining the observed variations in toxicity. Only Ca2+ and Mg2+ significantly alleviated the toxicity of Y3+ and Ce3+, while Na+, K+ and H+ showed no significant effects. Based on the cation competition, the derived binding constants for the hypothetical biotic ligands of wheat logKCaBL, logKMgBL, logKYBL, and logKCeBL were 3.87, 3.59, 6.70, and 6.48, respectively. The biotic ligand model (BLM) succeeded in predicting toxicities of Y and Ce, with more than 93% of the variance in toxicity explained. Given the BLM requires large data sets for deriving model parameters, attempts were further made to explore a simpler electrostatic based model to quantify REEs toxicity. The results demonstrated that the predictive capacity of the electrostatic approach, which considers ion activities at the plasma membrane surface, was comparable to that of BLM with at least 87% of the variations in toxicity explained. This suggested that the electrostatic theory can serve as a surrogate to BLM in modeling Y and Ce toxicities. Therefore, we recommend the BLM and electrostatic-based model as effective approaches to incorporate bioavailability in quantifying REEs toxicity in the presence of various levels of other major cations.
Afficher plus [+] Moins [-]Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland)
2019
Migaszewski, Zdzisław M. | Gałuszka, Agnieszka | Dołęgowska, Sabina
The Wiśniówka rock strip mining area (south-central Poland) with quartzite quarries, acid water bodies and tailings piles is one of the most unique acid mine drainage (AMD) sites throughout the world. This is due to the occurrence of enormous amounts of pyrite unknown in sedimentary formations worldwide. Of the two mineralization zones, one that is the most abundant in arsenical pyrite occurs in the lowermost Upper Cambrian formation of the Podwiśniówka quarry. The As-rich pyritiferous clastic rocks are exposed as a result of deep quartzite extraction during 2013–2014. In addition, the clayey-silty shale interbeds are enriched in rare earth element (REE) minerals. The mining operation left an acidic lake with a pH of about 2.4–2.6 and increased contents of sulfates, metal(loid)s and REE. The Podwiśniówka pyrite-rich waste material was stacked up in many places of the mining area giving rise to strongly acidic spills that jeopardized the neighboring environment. One of these unexplored tailings piles was a source of extremely sulfate- and metal(loid)-rich pools with unusual enrichments in As (up to 1548 mg L⁻¹) and REE (up to 24.84 mg L⁻¹). These distinctly exceeded those previously reported in the Wiśniówka area. A broad scope of geochemical, mineralogical and petrographic methods was used to document these specific textural and mineralogical properties of pyrite facilitating its rapid oxidation. The pyrite oxidation products reacted with REE-bearing minerals releasing these elements into acid water bodies. Statistical methods were employed to connect the obtained tailings pool hydrogeochemical data with those derived from this and the previous studies of the Podwiśniówka and Wiśniówka Duża acid pit lakes. In contrast to metal(loid) profiles, the characteristic shale-normalized REE concentration patterns turned out to be more suitable for solving different AMD issues including provenance of mine waste material in the tailings pile examined.
Afficher plus [+] Moins [-]A multivariate examination of the timing and accumulation of potentially toxic elements at Las Conchas bog (NW Spain)
2019
Gallego, José L.R. | Ortiz, José E. | Sánchez-Palencia, Yolanda | Baragaño, Diego | Borrego, Ángeles G. | Torres, Trinidad
The inorganic content of the well-preserved 3.2-m record of Las Conchas bog (NW Spain), covering 8000 cal yr BP., was analysed. To study natural vs. human contributions, we applied an innovative approach, namely the sequential study of multivariate statistics (factor analysis followed by clustering of the factor score matrix) and enrichment factors (EFs). The increasing weight of potentially toxic elements (PTEs) such as the geochemical association of Zn, Pb and Cd (EFs higher than 10, 20 and 40 in the last two centuries) was revealed, and corroborated by the contrast between the contents of anthropogenic Pb and total Rare Earth Elements (a suitable proxy for natural geogenic supplies). Furthermore, elements such as Hg, Tl and As also showed enrichment in the most recent samples of the study core. Some of them are commonly associated with global atmospheric transport; however, in this case, their increasing contents could also be explained by nearby industrial and mining activities.In summary, severe pollution was observed in the uppermost part of the record, thereby pointing to an important environmental concern. Given that local and regional sources of PTEs, such as mining and heavy industry, especially Zn smelting, were probably the main historical causes of this contamination and that some of these industries are still active, we consider that our findings deserve further attention.
Afficher plus [+] Moins [-]Indoor air pollution affects hypertension risk in rural women in Northern China by interfering with the uptake of metal elements: A preliminary cross-sectional study
2018
Wang, Bin | Zhu, Yibing | Pang, Yiming | Xie, Jing | Hao, Yongxiu | Yan, Huina | Li, Zhiwen | Ye, Rongwei
Coal combustion and passive smoking are two important contributors to indoor air pollution (IAP) in rural areas of northern China. Although the association between outdoor air pollutants and hypertension risk had been widely reported, fewer studies have examined the relationship between IAP and hypertension risk. This study evaluated the association between IAP and hypertension risk in housewives in rural areas of northern China and the potential mediation pathway of metal elements. Our cross-sectional study, conducted in Shanxi Province, China, enrolled 367 subjects without taking anti-hypertensive drugs, including 142 subjects with hypertension (case group) and 225 subjects without hypertension (control group). We collected information on energy use characteristics and lifestyle using questionnaires. An IAP exposure index was developed to indicate the population exposure to coal combustion and passive smoking. Scalp hair samples were collected from the housewives and various trace and major metal elements were measured. Our results revealed that the IAP index was positively correlated with systolic and diastolic blood pressure. A significant association between the IAP index and hypertension risk was found both without [odds ratio (95% confidence interval, CI) = 2.08 (1.30–3.31)] and with [OR (95% CI) = 2.52 (1.46–4.36)] adjustment for confounders. We also observed that the IAP index was positively correlated with the arsenic, lead, and rare earth element levels in hair samples, and negatively correlated with the levels of some other trace elements (i.e., chromium, cobalt, nickel, and tin) and alkaline earth elements (i.e., calcium, magnesium, and barium) with an overall p value of <0.01. We concluded that IAP may contribute to the development of hypertension in rural housewives in northern China, possibly by interfering with the uptake of metal elements.
Afficher plus [+] Moins [-]A pilot study on the association between rare earth elements in maternal hair and the risk of neural tube defects in North China
2017
Huo, Wenhua | Zhu, Yibing | Li, Zhenjiang | Pang, Yiming | Wang, Bin | Li, Zhiwen
Rare earth elements (REEs) have many applications in industry, agriculture, and medicine, resulting in occupational and environmental exposure and concerns regarding REE-associated health effects. However, few epidemiological studies have examined the adverse effects of REEs on pregnancy outcomes. Therefore, this study examined the relationship between the REE concentrations in maternal hair growing during early pregnancy and the risk of neural tube defects (NTDs) in offspring. We included 191 women with NTD-affected pregnancies (cases) and 261 women delivering healthy infants (controls). The cases were divided into three subtypes: anencephaly, spina bifida, and encephalocele. Four REEs in maternal hair were analyzed by inductively coupled plasma-mass spectrometry: lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd). A questionnaire was used to collect information about maternal sociodemographic characteristics and dietary habits. The median concentrations of Ce and Pr in the NTD group were higher than those in the control group, whereas there were no significant differences for La and Nd. The adjusted odds ratios (ORs) for the four REE concentrations above the median in the case groups were not significantly > 1. An increasing frequency of the consumption of beans or bean products and fresh fruit was negatively correlated with the four REE concentrations. Our results did not suggest that the concentrations of REEs in maternal hair were associated with the risk of NTDs or any subtype of NTDs in the general population.
Afficher plus [+] Moins [-]