Affiner votre recherche
Résultats 1-10 de 121
Biochar Derived from the Husk and Straw of Rice (Oryza sativa L.) Produced via Low-Temperature Pyrolysis as an Effective Adsorbent for Pb (II) Removal
2023
Chaijak, Pimprapa | Michu, Panisa | Thipraksa, Junjira | Kongthong, Alisa
Pyrolysis is a promising thermochemical conversion process that transforms biomass into biochar, a carbon-rich solid material, in an oxygen-limited environment. This study focuses on the utilization of rice byproducts, namely rice straw and rice husk as feedstock for biochar production through low-temperature pyrolysis. The aim is to explore the potential of these biochars as cost-effective adsorbents for removing metal contaminants from aqueous solutions, with a particular emphasis on Pb(II) removal. Physicochemical properties of the biochars produced at a low temperature of 300 °C were thoroughly investigated, including surface morphology and their adsorption capacity for Pb(II). Remarkably, the rice straw biochar (RSB) produced at 300 °C exhibited exceptional Pb(II) adsorption capacity, with a value of 390.10±0.30 mg/g, and demonstrated a high Pb(II) removal efficiency of 96.10±0.30% when modified with 30% w/w H2O2. A crucial aspect of this study lies in the evaluation of the cost-effectiveness of the biochar production process, particularly when compared to commercially available adsorbents. By demonstrating the potential of rice byproduct-derived biochar as an efficient Pb(II) biosorbent in aqueous environments, this work not only provides new insights into the preparation of biochar using low-temperature pyrolysis but also offers a viable and economical solution for metal-contaminated water treatment. The findings of this research contribute to the field of sustainable waste utilization and highlight the significant potential of rice byproduct-based biochar as an environmentally friendly adsorbent for heavy metal removal.
Afficher plus [+] Moins [-]Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion
2022
Zhao, Ranran | Zhang, Qixing | Xu, Xuezhe | Wang, Wenjia | Zhao, Weixiong | Zhang, Weijun | Zhang, Yongming
Organic aerosol (OA) emitted from biomass burning (BB) impacts air quality and global radiation balance. However, the comprehensive characterization of OA remains poorly understood because of the complex evolutionary behavior of OA in atmospheric processes. In this work, smoke particles were generated from rice straw combustion. The effect of OH radicals photooxidation on size distribution, light absorption, and molecular compositions of smoke particles was systematically investigated. The results showed that the median diameters of smoke particles increased by a factor of approximately 1.2 after photooxidation. In the particle compositions, although both non-polar fractions (n-hexane-soluble organic carbon, HSOC) and polar fractions (water-soluble organic carbon, WSOC) underwent photobleaching after aging, the photobleaching properties of HSOC (1.87–2.19) was always higher than that of WSOC (1.52–1.33). Besides, the light-absorbing properties of HSOC were higher than that of WSOC, showing a factor of approximately 1.75 times for mass absorption efficiency at 365 nm (MAE₃₆₅). Consequently, the simple forcing efficiency (SFE) caused by absorption showed that HSOC has higher radiation effects than WSOC. After photooxidation, the concentration of 16 PAHs in HSOC fractions significantly decreased by 15.3%–72.5%. In WSOC fractions, the content of CHO, CHONS, and CHOS compounds decreased slightly, while the content of CHON compounds increased. Meantime, the variations in molecular properties supported the decrease in light absorption of WSOC fractions. These results reveal the aging behavior of smoke particles, then stress the importance of non-polar organic fractions in particles, providing new insights into understanding the atmospheric pollution caused by BB smoke particles.
Afficher plus [+] Moins [-]Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China
2021
Ding, Wencheng | Xu, Xinpeng | Zhang, Jiajia | Huang, Shaohui | He, Ping | Zhou, Wei
Decision-making related to nitrogen (N) fertilization is a crucial step in agronomic practices because of its direct interactions with agronomic productivity and environmental risk. Here, we hypothesized that soil apparent N balance could be used as an indicator to determine the thresholds of N input through analyzing the responses of the yield and N loss to N balance. Based on the observations from 951 field experiments conducted in rice (Oryza sativa L.) cropping systems of China, we established the relationships between N balance and ammonia (NH₃) volatilization, yield increase ratio, and N application rate, respectively. Dramatical increase of NH₃ volatilizations and stagnant increase of the rice yields were observed when the N surplus exceeded certain levels. Using a piecewise regression method, the seasonal upper limits of N surplus were determined as 44.3 and 90.9 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the responses of NH₃ volatilization, and were determined as 53.0–74.9 and 97.9–112.0 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the maximum-yield consideration. Based on the upper limits of N surplus, the thresholds of N application rate suggested to be applied in single, middle-MLYR, middle-SW, early, and late rice types ranged 179.0–214.9 kg N ha⁻¹ in order to restrict the NH₃ volatilization, and ranged 193.3–249.8 kg N ha⁻¹ in order to achieve the maximum yields. If rice straw was returned to fields, on average, the thresholds of N application rate could be theoretically decreased by 17.5 kg N ha⁻¹. This study provides a robust reference for restricting the N surplus and the synthetic fertilizer N input in rice fields, which will guide yield goals and environmental protection.
Afficher plus [+] Moins [-]Application of laccase immobilized rice straw biochar for anthracene degradation
2021
Imam, Arfin | Suman, Sunil Kumar | Singh, Raghuvir | Vempatapu, Bhanu Prasad | Ray, Anjan | Kanaujia, Pankaj K.
The present study explores the immobilization of ligninolytic enzyme-laccase on the surface of rice straw biochar and evaluates its application for anthracene biodegradation. The rice straw biochar was acid-treated to generate carboxyl functionality on its surface, followed by detailed morphological and chemical characterization. The surface area of functionalized biochar displayed a two-fold increase compared to the untreated biochar. Laccase was immobilized on functionalized biochar, and an immobilization yield of 66% was obtained. The immobilized enzyme demonstrated operational stability up to six cycles while retaining 40% of the initial activity. Laccase immobilization was further investigated by performing adsorption and kinetic studies, which revealed the highest immobilization concentration of 500 U g⁻¹ at 25 °C. The adsorption followed the Langmuir isotherm model at equilibrium, and the kinetic study confirmed pseudo-second-order kinetics. The equilibrium rate constant (K₂) at 25 °C and 4 °C were 3.6 × 10⁻³ g U⁻¹ min⁻¹ and 4 × 10⁻³ g U⁻¹ min⁻¹ respectively for 100 U g⁻¹ of enzyme loading. This immobilized system was applied for anthracene degradation in the aqueous batch mode, which resulted in complete degradation of 50 mg L⁻¹ anthracene within 24 h of interaction exposure.
Afficher plus [+] Moins [-]Magnetic biochars have lower adsorption but higher separation effectiveness for Cd2+ from aqueous solution compared to nonmagnetic biochars
2021
Huang, Fei | Zhang, Si-Ming | Wu, Ren-Ren | Zhang, Lu | Wang, Peng | Xiao, Rong-Bo
Magnetic biochars were prepared by chemical co-precipitation of Fe³⁺/Fe²⁺ onto rice straw (M-RSB) and sewage sludge (M-SSB), followed by pyrolysis treatment, which was also used to prepare the corresponding nonmagnetic biochars (RSB and SSB). The comparison of adsorption characteristics between magnetic and nonmagnetic biochars was investigated as a function of pH, contact time, and initial Cd²⁺ concentration. The adsorption of nonmagnetic biochars was better described by pseudo-second-order kinetic model, and the adsorption of RSB and SSB was better described by Langmuir and Freundlich models, respectively. Magnetization of the biochars did not change the applicability of their respective adsorption models, but reduced their adsorption capabilities. The maximum capacities were 42.48 and 4.64 mg/g for M-RSB and M-SSB, respectively, underperforming their nonmagnetic counterparts of 58.65 and 7.22 mg/g for RSB and SSB. Such a reduction was fundamentally caused by the decreases in the importance of cation-exchange and Cπ-coordination after magnetization, but the Fe-oxides contributed to the precipitation-dependent adsorption capacity for Cd²⁺ on magnetic biochars. The qualitative and quantitative characterization of adsorption mechanisms were further analyzed, in which the contribution proportions of cation-exchange after magnetization were reduced by 31.9% and 12.1% for M-RSB and M-SSB, respectively, whereas that of Cπ-coordination were reduced by 3.4% and 31.1% for M-RSB and M-SSB, respectively. These reductions suggest that for adsorbing Cd²⁺ the choice of conventional biochar was more relevant than whether the biochar was magnetized. However, magnetic biochars are easily separated from treated solutions, depending largely on initial pH. Their easy of separation suggests that magnetic biochars hold promise as more sustainable alternatives for the remediation of moderately Cd-contaminated environments, such as surface water and agriculture soil, and that magnetic biochars should be studied further.
Afficher plus [+] Moins [-]The synergetic role of rice straw in enhancing the process of Cr(VI) photoreduction by oxalic acid
2020
Zhang, Ling | Sun, Jie | Niu, Weiya | Cao, Fengming
Based on the goal of green and effective removal of chromium (Cr(VI)) pollution in water and the idea of treating waste with waste, rice straw (RS) was firstly and successfully used in enhancing the photoreduction of highly toxic Cr(VI) to less toxic Cr(III) by oxalic acid (Ox). Batch experiments (the effect of Ox concentration, initial Cr(VI) concentration, RS dosage and coexisting ions) in Ox + RS + UV photoreduction system were designed to investigate the reaction process. Through studying the effect of initial pH in the solution, the change of pH during the photoreduction process and the free radical scavenging test, the Cr(VI) photoreduction mechanism in Ox + RS + UV system was revealed. The role of RS in Ox + RS + UV system was also deduced by the analysis of FT-IR, XRD, Mott-Schottky and the verification test of the role of –OH and SiO₂ on RS. The results showed that RS could significantly synergize Ox to reduce Cr(VI) under UV, 1 mM Cr(VI) in aqueous solution was completely removed in 60 min by Ox + RS + UV system. The Cr(VI) photoreduction mechanism in Ox + RS + UV system consisted of multiple parts: the chemical reduction by Ox(few part), the photoreduction by Ox(some part), and the synergistic photoreduction by RS with Ox(large part). The synergism of RS in Ox + RS + UV system was mainly attributed to its components of SiO₂ and –OH of cellulose.
Afficher plus [+] Moins [-]A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2
2020
Laskar, Amzad H. | Maurya, Abhayanand S. | Singh, Vishvendra | Gurjar, Bhola R. | Liang, Mao-Chang
Air quality in the megacity Delhi is affected not only by local emissions but also by pollutants from crop residue burning in the surrounding areas of the city, particularly the rice straw burning in the post monsoon season. As a major burning product, gaseous CO₂, which is rather inert in the polluted atmosphere, provides an alternative solution to characterize the impact of biomass burning from a new perspective that other common tracers such as particulate matters are limited because of their physical and chemical reactiveness. Here, we report conventional ([CO₂], δ¹³C, and δ¹⁸O) and unconventional (Δ¹⁷O) isotope data for CO₂ collected at Connaught Place (CP), a core area in the megacity Delhi, and two surrounding remote regions during a field campaign in October 18–20, 2017. We also measured the isotopic ratios near a rice straw burning site in Taiwan to constrain their end member isotopic compositions. Rice straw burning produces CO₂ with δ¹³C, δ¹⁸O, and Δ¹⁷O values of −29.02 ± 0.65, 19.63 ± 1.16, and 0.05 ± 0.02‰, respectively. The first two isotopic tracers are less distinguishable from those emitted by fossil fuel combustion but the last one is significantly different. We then utilize these end member isotopic ratios, with emphasis on Δ¹⁷O for the reason given above, for partitioning sources that affect the CO₂ level in Delhi. Anthropogenic fraction of CO₂ at CP ranges from 4 to 40%. Further analysis done by employing a three-component (background, rice straw burning, and fuel combustion) mixing model with constraints from the Δ¹⁷O values yields that rice straw burning contributes as much as ∼70% of the total anthropogenic CO₂, which is more than double of the fossil fuel contribution (∼30%), during the study days.
Afficher plus [+] Moins [-]A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal
2019
Yang, Shanshan | Chen, Yi-di | Zhang, Ye | Zhou, Hui-Min | Ji, Xin-Yu | He, Lei | Xing, De-Feng | Ren, Nan-Qi | Ho, Shih-Hsin | Wu, Weimin
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms’ life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
Afficher plus [+] Moins [-]Comparative evaluation of bioremediation techniques on oil contaminated sediments in long-term recovery of benthic community health
2019
Lee, Changkeun | Hong, Seongjin | Noh, Junsung | Lee, Junghyun | Yoon, Seo Joon | Kim, Taewoo | Kim, Hosang | Kwon, Bong-Oh | Lee, Hanbyul | Ha, Sung Yong | Ryu, Jongseong | Kim, Jae Jin | Kwon, Kae Kyoung | Yim, Un Hyuk | Khim, Jong Seong
While various bioremediation techniques have been widely used at oil spill sites, the in situ efficiency of such techniques on recovering the benthic communities in intertidal areas has not been quantified. Here, the performance of several bioremediation tools such as emulsifiers, multi-enzyme liquid (MEL), microbes, and rice-straw was evaluated by a 90-days semi-field experiment, particularly targeting recovery of benthic community. Temporal efficiency in the removal of sedimentary total petroleum hydrocarbons (TPH), reduction of residual toxicity, and recovery of bacterial diversity, microalgal growth, and benthic production was comprehensively determined. Concentrations of TPH and amphipod mortality for all treatments rapidly decreased within the first 10 days. In addition, the density of bacteria and microphytobenthos generally increased over time for all treatments, indicating recovery in the benthic community health. However, the recovery of some nitrifying bacteria, such as the class Nitrospinia (which are sensitive to oil components) remained incomplete (13–56%) during 90 days. Combination of microbe treatments showed rapid and effective for recovering the benthic community, but after 90 days, all treatments showed high recovery efficiency. Of consideration, the “no action” treatment showed a similar level of recovery to those of microbe and MEL treatments, indicating that the natural recovery process could prevail in certain situations.
Afficher plus [+] Moins [-]Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice–wheat cropping soil under different fertilization treatments
2019
Hui, Cai | Liu, Bing | Wei, Ran | Jiang, Hui | Zhao, Yuhua | Liang, Yongchao | Zhang, Qichun | Xu, Ligen
Although fertilization plays an important role in determining the contents of soil dissolved organic matters or water-extractable organic matter (DOM, WEOM), knowledge regarding the dynamics, biodegradability, and microbial community shifts of WEOM in response to different fertilization treatments is very limited, particularly in rice–wheat cropping soil. Thus, in the present study, we performed biodegradation experiments using WEOM extracted from samples of soil that had been subjected to four different fertilization treatments: unfertilized control (CK), chemical fertilizer (CF), 50% chemical fertilizer plus pig manure (PMCF), and 100% chemical fertilizer plus rice straw (SRCF). UV spectrum and fluorescence 3D excitation–emission matrix analyses applied to investigate the chemical composition of WEOM revealed that all examined WEOMs were derived from microbial activity and the dominant portion comprised humic acid-like compounds. After the incubation, 31.17, 31.63, 43.47, and 33.01% of soil WEOM from CK, CF, PMCF, and SRCF treatments, respectively, were biodegraded. PMCF- derived WEOM had the highest biodegradation rate. High-throughput sequencing analyses performed to determine the microbial community before and after the incubation indicated that Sphingomonas, Bacillus, and Flavisolibacter were the predominant bacterial genera in the original inoculum derived from the four fertilization treatments. Following biodegradation, we observed that the dominant bacteria differed according to fertilization treatments: Curvibacter (43.25%) and Sphingobium (10.47%) for CK, Curvibacter (29.68%) and Caulobacter (20.00%) for CF, Azospirillum (23.68%) and Caulobacter (13.29%) for PMCF, and Ralstonia (51.75%) for SRCF. Canonical correspondence analysis revealed that, shifts in the microbial community were closely correlated with pH and specific UV absorbance at 254 nm. We speculated that the inherent traits of different WEOM and the properties of soil solutions under different fertilization treatments shaped the soil microbial community structure, thereby influencing the biodegradation of WEOM.
Afficher plus [+] Moins [-]