Affiner votre recherche
Résultats 1-10 de 101
Assessment of cyanotoxins in water and fish in an African freshwater lagoon (Lagoon Aghien, Ivory Coast) and the application of WHO guidelines
2023
Yao, Eric Kouamé | Ahoutou, Mathias Koffi | Olokotum, Mark | Hamlaoui, Sahima | Lance, Emilie | Marie, Benjamin | Bernard, Cécile | Djeha, Rosine Yao | Quiblier, Catherine | Humbert, Jean-François | Coulibaly, Julien Kalpy | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
In comparison with northern countries, limited data are available on the occurrence and potential toxicity of cyanobacterial blooms in lakes and ponds in sub-Saharan countries. With the aim of enhancing our knowledge on cyanobacteria and their toxins in Africa, we performed a 17-month monitoring of a freshwater ecosystem, Lagoon Aghien (Ivory Coast), which is used for multiple practices by riverine populations and for drinking water production in Abidjan city. The richness and diversity of the cyanobacterial community were high and displayed few variations during the entire survey. The monthly average abundances ranged from 4.1 × 10 4 to 1.8 × 10 5 cell mL −1 , with higher abundances recorded during the dry seasons. Among the five cyanotoxin families analyzed (anatoxin-a, cylindrospermopsin, homoanatoxin, microcystins, saxitoxin), only microcystins (MC) were detected with concentrations ranging from 0 to 0.364 μg L −1 in phytoplankton cells, from 32 to 1092 μg fresh weight (FW) kg −1 in fish intestines, and from 33 to 383 μg FW kg −1 in fish livers. Even if the MC concentrations in water and fish are low, usually below the thresholds defined in WHO guidelines, these data raise the issue of the relevance of these WHO guidelines for sub-Saharan Africa, where local populations are exposed throughout the year to these toxins in multiple ways.
Afficher plus [+] Moins [-]Human health risk assessment for exposure to BTEXN in an urban aquifer using deterministic and probabilistic methods: A case study of Chennai city, India
2020
Rajasekhar, Bokam | Nambi, Indumathi M. | Govindarajan, Suresh Kumar
The aquifer in Tondiarpet, Chennai, had been severely contaminated with petroleum fuels due to an underground pipeline leakage. Groundwater samples were analyzed quarterly for priority pollutants such as benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN) using purge and trap gas chromatography and mass spectrometer from 2016 to 2018. The maximum concentrations of BTEXN in groundwater at the site were found to be greater than the permissible limits significantly. Among the five sampling locations (MW1, MW2, MW3, MW4, and MW5), mean BTEXN levels were found to be higher near MW2, confirming the source location of petroleum leakage. Human health risk assessment was carried out using deterministic and probabilistic methods for exposure to BTEXN by oral and dermal exposure pathways. Risk analysis indicated that mean cancer and non-cancer risks were many times higher than the allowable limits of 1E-06 and 1 respectively in all age groups (children, teens, and adults), implying the adverse health effects. Oral exposure is predominately contributing (60–80%) to the total health risk in comparison to the dermal exposure route. Variability and uncertainty were addressed using the Monte Carlo simulations and the resultant minimum, maximum, 5th, 95th, and mean percentile risks were predicted. Under the random exposure conditions to BTEXN, it was estimated that the risk would become unacceptable for >98.7% of the exposed population. Based on the sensitivity analysis, exposure duration, and ingestion rate are the crucial variables contributing significantly to the health risk. As part of the risk management, preliminary remediation goals for the study site were estimated, which require >99% removal of the BTEXN contamination for risk-free exposures. It is suggested that the residents of Tondiarpet shouldn’t utilize the contaminated groundwater mainly for oral ingestion to lower the cancer incidence related to exposure to BTEXN.
Afficher plus [+] Moins [-]Occurrence, distribution, and risk assessment of pharmerciuticals in wastewater and open surface drains of peri-urban areas: Case study of Juja town, Kenya
2020
Muriuki, Cecilia W. | Home, Patrick G. | Raude, James M. | Ngumba, Elijah K. | Munala, Gerryshom K. | Kairigo, Pius K. | Gachanja, Anthony N. | Tuhkanen, Tuula A.
The occurrence of Active Pharmaceutical Ingredients (APIs) in the environment is becoming a major area of concern due to their undesirable effects on non-target organisms. This study investigated the occurrence and risk of contamination by five antibiotics and three antiretrovirals drugs in a fast-growing peri-urban area in Kenya, with inadequate sewer system coverage. Due to poor sewage connectivity and poorly designed decentralized systems, wastewater is directly released in open drains. Water and sediment samples were collected from open surface water drains, while wastewater samples were collected from centralized wastewater treatment plants (WWTP). Solid-phase extraction and ultrasonic-assisted extraction for the aqueous and sediment samples respectively were carried out and extracts analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) using isotopically labeled internal standards. APIs were observed with the detection frequency ranging from 36% to 100%. High mean concentrations of 48.7 μg L⁻¹, 108 μg L⁻¹, and 532 μg L⁻¹ were observed in surface drains for Lamivudine (3 TC), Sulfamethoxazole (SMX), Ciprofloxacin (CIP) respectively. Drain sediments also showed high concentrations of APIs ranging from 2.1 to 13,100 μg kg⁻¹. APIs in this study exceeded those observed in existing literature studies. JKUAT WWTP removal efficiencies varied from −90.68% to 72.67%. Total APIs emission load of the study area was 3550 mg d⁻¹ with WWTP effluent contributing higher loads (2620 mg d⁻¹) than surface water drains (640 mg d⁻¹). Zidovudine (ZDV), nevirapine (NVP), and trimethoprim (TMP) loads in drains, however, exceeded WWTP effluent. Low to high ecotoxicity risk of the individual APIs were observed to the aquatic environment, with high risks for the development of antibiotic resistance in microbiome as determined by the risk quotient (RQ) approach. Risk management through efficient wastewater collection, conveyance, and treatment is necessary to suppress the measured concentrations.
Afficher plus [+] Moins [-]How persistent are POPs in remote areas? A case study of DDT degradation in the Qinghai-Tibet Plateau, China
2020
Huang, Huanfang | Li, Jun | Zhang, Yuan | Chen, Wenwen | Ding, Yang | Chen, Wei | Qi, Shihua
Persistent organic pollutants (POPs) can undergo long-range atmospheric transport (LRAT) and deposit in remote areas. How persistent are POPs in remote areas? To answer this question, we measured two parent-DDTs and eight metabolites in soil and air along a transect in the Qinghai-Tibet Plateau, China, to quantitatively evaluate the degree of degradation of DDTs. DDTs were ubiquitous in soil and air with the total DDT concentrations (Σ₁₀DDTs) ranging 37.7–70,100 pg g⁻¹ dw and 3.4–175 pg m⁻³, respectively. The air-soil equilibrium status indicated that the forest/basin soil was a source for most DDTs, while the plateau soil was a sink receiving DDTs from the LRAT and photodegradation in the air (for metabolites). The metabolites accounted for avg. 64.1% of Σ₁₀DDTs in soil, with avg. 93.2% from local degradation, implying the overall high degradation of DDTs. With the significant degradation, the continuous input via LRAT was deemed to be the main reason for the stable level (persistence) of POPs in the Qinghai-Tibet Plateau. Therefore, we emphasize the importance of source control for the risk management of POPs. POPs in the environment might decline rapidly due to a reduction in source input and significant degradation as indicated by our study.
Afficher plus [+] Moins [-]Urbanization and regional air pollution across South Asian developing countries – A nationwide land use regression for ambient PM2.5 assessment in Pakistan
2020
Shi, Yuan | Vēlāyutan̲, T. A. | Ho, Hung Chak | Omar, Abid
Rapid economic growth, urban sprawl, and unplanned industrialization has increased socioeconomic statuses but also decreased air quality in South Asian developing countries. Therefore, severe increase in air pollution has been a threat of local population, regarding health statuses, livability and quality of life. It is necessary to estimate fine-scale spatiotemporal distribution of ambient PM₂.₅ in a national context so that the environmental planners and government officials can use it for environmental protocol development and policy-making. In this study, a spatiotemporal land use regression (LUR) model is developed to refine global air quality data to the national-scale ambient PM₂.₅ exposure in a high-density country in South Asia – Pakistan. Combining with transport network, patterns of land use, local meteorological conditions, geographic characteristics, landscape characteristics, and satellite-derived data, our resultant model explains 54.5% of the variation in ambient PM₂.₅ concentration level. Furthermore, tree coverage and road transport are identified to be two influential factors of the national-scale spatial variation of PM₂.₅ in Pakistan, which implied that urbanization might be the major cause of air pollution across the country. In conclusion, our resultant LUR model as well as the spatial map of ambient PM₂.₅ concentration level can be used as a supporting tool for national health risk management and environmental planning, and could also contribute to the air quality management and pollution reduction actions of Pakistan.
Afficher plus [+] Moins [-]Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay
2019
Shaheen, Sabry M. | Wang, Jianxu | Swertz, Ann-Christin | Feng, Xinbin | Bolan, Nanthi | Rinklebe, Jörg
Enhancing metals phytoextraction using gentile mobilizing agents might be an appropriate approach to increase the phytoextraction efficiency and to shorten the phytoremediation duration. The effect of sulfur-impregnated organoclay (SIOC) on the redistribution of potentially toxic elements (PTEs) among their geochemical fractions in soils and their plant uptake has not yet been studied. Therefore, our aim is to investigate the role of different SIOC application doses (1%, 3% and 5%) on operationally defined geochemical fractions (soluble + exchangeable; bound to carbonate; manganese oxide; organic matter; sulfide; poorly- and well-crystalline Fe oxide; and residual fraction) of Cd, Cr, Cu, Ni, Pb, and Zn, and their accumulation by pea (Pisum sativum) and corn (Zea mays) in a greenhouse pot experiment using a polluted floodplain soil. The SIOC caused a significant decrease in soil pH, and an increase in organic carbon and total sulfur content in the soil. The addition of SIOC increased significantly the soluble + exchangeable fraction and bioavailability of the metals. The SIOC leads to a transformation of the residual, organic, and Fe-Mn oxide fractions of Cd, Cu, Ni, and Zn to the soluble + exchangeable fraction. The SIOC addition increased the potential mobile (non-residual) fraction of Cr and Pb. The SIOC increased the sulfide fraction of Cr, Ni, and Zn, while it decreased the same fraction for Cd, Cu, and Pb. The effect of SIOC on the redistribution of metal fractions increased with enhancing application dosages. Pea accumulated more metals than corn with greater accumulation in the roots than shoots. Application of the higher dose of SIOC promoted the metals accumulation by roots and their translocation to shoots of pea and corn. Our results suggest the potential suitability of SIOC for enhancing the phytomanagement of PTEs polluted soils and reducing the environmental risk of these pollutants.
Afficher plus [+] Moins [-]Integrated regional ecological risk assessment of multiple metals in the soils: A case in the region around the Bohai Sea and the Yellow Sea
2018
Shi, Yajuan | Xu, Xiangbo | Li, Qifeng | Zhang, Meng | Li, Jing | Lü, Yonglong | Liang, Ruoyu | Zheng, Xiaoqi | Shao, Xiuqing
Methodology to quantify and distinguish the spatial distribution of the risks from multiple pollutants within the region was developed in this paper. An integrated quantitative risk assessment was conducted by utilizing a large amount of information available to explore spatial distribution of risk by single and multiple pollutants, and the magnitude of the overall risk from multiple pollutants based on the current concentrations of pollutants and toxicity data. Two target criteria levels – level I (NOEC/LOEC based) and level II (LC/EC/IC₅₀ based) – were employed, and thus, the regional and sub-regional risks were evaluated according to these two levels. The risk of multiple toxic metals (As, Cd, Cr, Hg and Pb) to a terrestrial ecosystem for the region around the Bohai Sea and the Yellow Sea were evaluated as a case. The total overall ecological risks from heavy metals in the region for level I and level II were 21.73% and 12.53%, respectively. The risks were ranked in the order of Cr > As > Pb > Cd > Hg with Cr posing the greatest ecological risk, which was 61.12% for level I. The top three cities according to the level II ecological risk were Cangzhou > Lianyungang > Panjin, while the top three cities of level I ecological risk were Cangzhou > Panjin > Lianyungang. This method provides a quantitative risk assessment with multiple and clear protection levels for risk management.
Afficher plus [+] Moins [-]Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region
2017
Lau, Yuk King | Du, Qingyun | Wang, Qi | Yu, Huanyun | Liu, Jianfeng | Tian, Yu | Chang, Chunying | Lei, Jing
The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management.
Afficher plus [+] Moins [-]Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis
2016
Shao, Diwei | Zhan, Yu | Zhou, Wenjun | Zhu, Lizhong
While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg−1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p < 0.05; 0.0081 mg kg−1 year−1), a decreasing trend for Cu (p < 0.05; -0.80 mg kg−1 year−1), and no significant trend for Pb (p = 0.155), Zn (p = 0.746), and Ni (p = 0.305). The increasing rate of Cd from the meta-analysis is consistent with the rate (0.0013 mg kg−1 year−1) derived from the mass balance calculation for Cd, where atmospheric deposition originated from intensive coal combustion is considered as the main source of Cd in the topsoil. The decreasing trend of Cu is likely due to largely reduced application of copper-based agrochemicals. Environmental regulation and soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd.
Afficher plus [+] Moins [-]Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil
2014
Li, W.C.
With the rapid economic development, a better living condition leads to longer life expectancy, which increased the total population, in particular the elderly group. It may result in increase in the demand of pharmaceuticals for people in domestic use or in hospital. Although most sewage treatment plants or waste water treatment plantsmet the regulatory requirement, there are still many pharmaceuticals removed incompletely and thus discharged to the environment. Therefore, the pharmaceuticals residue draws the public concern because they might cause adverse effects on the organism even human beings. Recently, many studies have published on the source and occurrence as well as the fate of pharmaceuticals all over the world. This paper summarized and reviewed the recent studies on the sources, occurrence, fate and the effects of the most common pharmaceuticals. Finally, it gave the suggestion and risk management for controlling the pharmaceuticals.
Afficher plus [+] Moins [-]