Affiner votre recherche
Résultats 1-10 de 888
Groundwater quality determination regarding major anions and cations (Case study of an aquifer in the Lut Desert, Iran)
2015
Nasrabadi, Touraj | Baghvand, Akbar | Vosoogh, Ali
Groundwater quality regarding major anions and cations in the Birjand Plain located in the largest desert in Eastern Iran was monitored in this study. Fifteen boreholes were considered as sampling stations and the parameters pH, TDS, EC and major anions and cations were measured in groundwater samples. The dominant groundwater types can be introduced as sodium-chloride and magnesium-sulphate. The majority of samples were within the not-suitable category for drinking uses. Regarding agricultural use, around 80 and 50 per cent of samples indicated a very high salinity hazard and a very high sodium alkali hazard, respectively. Spatial distribution of salinity was also monitored within the study area. If the study area was considered to be a semicircle, the centre appeared to be the least polluted area, while towards the peripheral surroundings, an increasing behaviour was observed. Intrusion of salt water from eastern and western parts of the study area caused severe groundwater degradation. The relatively better quality of groundwater in southern areas may be attributed to a chain of mountains located along south of the study area. The prevention of uncontrolled groundwater withdrawal must be regarded to cease the salinization trend and to prepare the required infrastructure for implementing the artificial recharge projects.
Afficher plus [+] Moins [-]Studies on the solid waste extracts from a chloro alkali factory: I. Morphological behaviour of rice seedlings grown in the waste extract.
1984
Misra S.R. | Misra B.N.
Influence of environmental factors on the response of a natural population of Daphnia magna (Crustacea: Cladocera) to spinosad and Bacillus thuringiensis israelensis in Mediterranean coastal wetlands
2010
Duchet, Claire | Caquet, Thierry | Franquet, Evelyne | Lagneau, C. | Lagadic, Laurent | Écologie et santé des écosystèmes (ESE) ; Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST | Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen | Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP) ; Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS)
The present study was undertaken to assess the impact of a candidate mosquito larvicide, spinosad (8, 17 and 33 μg L−1) on a field population of Daphnia magna under natural variations of water temperature and salinity, using Bti (0.16 and 0.50 μL L−1) as the reference larvicide. Microcosms (125 L) were placed in a shallow temporary marsh where D. magna was naturally present. The peak of salinity observed during the 21-day observation period may have been partly responsible for the decrease of daphnid population density in all the microcosms. It is also probably responsible for the absence of recovery in the microcosms treated with spinosad which caused a sharp decrease of D. magna abundance within the first two days following treatment whereas Bti had no effect. These results suggest that it may be difficult for a field population of daphnids to cope simultaneously with natural (water salinity and temperature) and anthropogenic (larvicides) stressors. Significant interaction between salinity and spinosad exposure impairs the recovery of a natural population of Daphnia magna
Afficher plus [+] Moins [-]Effect of salinity on the fate of pesticides in irrigated systems: a first overview
2023
Khouni, Mariem | Hammecker, Claude | Grünberger, Olivier | Chaabane, Hanène | Institut National Agronomique de Tunisie (INAT) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | PROJET PRIMA ALTOS
International audience | This review investigates the impact of salinity on the fate of the active compounds of pesticides in a cultivated environment. Due to the over-exploitation of water resources and intensification of agriculture, salinity outbreaks are being observed more often in cultivated fields under pesticide treatments. Nevertheless, there is a poor understanding of the incidence of varying water salt loads on the behavior of pesticides’ active ingredients in soil and water bodies. The present review established that water salinity can affect the diffusion of pesticides’ active ingredients through numerous processes. Firstly, by increasing the vapor pressure and decreasing the solubility of the compounds, which is known as the salting-out effect, salinity can change the colligative properties of water towards molecules and the modification of exchange capacity and sorption onto the chemicals. It has also been established that the osmotic stress induced by salinity could inhibit the biodegradation process by reducing the activity of sensitive microorganisms. Moreover, soil properties like dissolved organic matter, organic carbon,clay content, and soil texture control the fate and availability of chemicals in different processes of persistence in water and soil matrix. In the same line, salinity promotes the formation of different complexes, such as between humic acid and the studied active compounds. Furthermore, salinity can modify the water flux due to soil clogging because of the coagulation and dispersion of clay particle cycles, especially when the change in salinity ranges is severe.
Afficher plus [+] Moins [-]Effect of salinity on the fate of pesticides in irrigated systems: a first overview
2023
Khouni, Mariem | Hammecker, Claude | Grünberger, Olivier | Chaabane, Hanène | Institut National Agronomique de Tunisie (INAT) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | PROJET PRIMA ALTOS
International audience | This review investigates the impact of salinity on the fate of the active compounds of pesticides in a cultivated environment. Due to the over-exploitation of water resources and intensification of agriculture, salinity outbreaks are being observed more often in cultivated fields under pesticide treatments. Nevertheless, there is a poor understanding of the incidence of varying water salt loads on the behavior of pesticides’ active ingredients in soil and water bodies. The present review established that water salinity can affect the diffusion of pesticides’ active ingredients through numerous processes. Firstly, by increasing the vapor pressure and decreasing the solubility of the compounds, which is known as the salting-out effect, salinity can change the colligative properties of water towards molecules and the modification of exchange capacity and sorption onto the chemicals. It has also been established that the osmotic stress induced by salinity could inhibit the biodegradation process by reducing the activity of sensitive microorganisms. Moreover, soil properties like dissolved organic matter, organic carbon,clay content, and soil texture control the fate and availability of chemicals in different processes of persistence in water and soil matrix. In the same line, salinity promotes the formation of different complexes, such as between humic acid and the studied active compounds. Furthermore, salinity can modify the water flux due to soil clogging because of the coagulation and dispersion of clay particle cycles, especially when the change in salinity ranges is severe.
Afficher plus [+] Moins [-]Contribution to the evaluation of usability of surface water from the "Gornji Banat" meliorated region [Serbia, Yugoslavia] for irrigation
1998
Vidovic, M. (Zavod za zastitu zdravlja, Kikinda (Yugoslavia)) | Cupic, S. | Kilibarda, P. | Medarevic, S.
The paper summarizes the results on the quality of surface water of the Gornji Banat region (Serbia, Yugoslavia). Based on different classifications, statistic data processing was made and the conclusions on the usability of the water for irrigation are given. According to the results obtained there is an urgent need for efficient measures to improve the quality of canal water and the control the polluters.
Afficher plus [+] Moins [-]Seawater intrusion decreases the metal toxicity but increases the ecological risk and degree of treatment for coastal groundwater: An Indian perspective
2022
Bhagat, Chandrashekhar | Manish Kumar, | Mahlknecht, Jürgen | Hdeib, Rouya | Mohapatra, Pranab Kumar
Contaminant vulnerability in the critical zones like groundwater (GW)-seawater (SW) continuum along the entire Gujarat coast was investigated for the first time through an extensive water monitoring survey. The prime focus of the study was to evaluate whether or not: i) seawater intrusion induced metal load translates to toxicity; ii) in the coastal groundwater, metal distribution follows the pattern of other geogenic and anthropogenic contaminants like NO₃- and F-; and iii) what future lies ahead pertaining to metal fate in association with saturation conditions of the coastal aquifers. The spatial distribution of contaminants depicts that the Gulf of Khambhat area is highly contaminated. Ecological risk assessment (ERA) indicates that the Gujarat coast is experiencing a high ecological risk compared to the southeast coast of India. Investigation results revealed that metals, pH, NO₃, and CO₃ are more vulnerable at the SW-GW mixing interface. An increase in pH is reflected in fewer ionic species of metals in the GW. Salinity ingress due to seawater intrusion (SWI) reduces the toxicities of all trace metals except Cu, attributed to the increase of Ca in GW, leading to dissociation of CuCO₃. Reactive species are dominant for Zn and Cd; and M-CO₃ ligands are dominant for Cu and Pb owing to the undersaturation of dolomite and calcite in the aquifer system. SWI tends to increase the metal load but the toxicity of metals varies with the density of industries, anthropogenic activities, changes in the mixing-induced saturation conditions, and intensive salt production across the coast. Multivariate analysis confirmed that the hydrogeochemical processes change due to GW-SW mixing and dictates over natural weathering. The ecological risk index (ERI) for the Arabian sea is experiencing moderate (300 ≥ ERI>150) to high ecological risk (ERI >600). Children population is likely to encounter a high health risk through ingestion and dermal exposure than adults. Overall, the study emphasizes the complexity of toxicity-related health impacts on coastal communities and suggests the dire need for frequent water monitoring along the coastal areas for quick realization of sustainable development goals.
Afficher plus [+] Moins [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain)
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
Afficher plus [+] Moins [-]Increasing salinization of freshwater limits invasiveness of a live-bearing fish: Insights from behavioral and life-history traits
2022
Zhou, Linjun | Liu, Kai | Zhao, Yu | Cui, Ling | Dong, Chenglong | Wang, Zaizhao
Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.
Afficher plus [+] Moins [-]Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity
2022
Li, Yang | Mu, Di | Wu, Hong-Qing | Tan, Dan-Dan | Liu, Xian-Hua | Sun, Jun | Ji, Zhi-Yong
Copper has become one of the most important heavy metal pollutants in the environment because of its wide application and high toxicity, but research on water quality criteria (WQCs) on copper is limited, especially the derivation of seawater WQC. In addition, the toxicity of copper in the seawater system is affected by various environmental factors. Therefore, establishing a WQC that meets the characteristics of the regional environment is a top priority. The correlations between four factors of temperature, salinity, pH, dissolved organic carbon (DOC) and the toxic effect values of copper were analyzed in this study, and the temperature was determined as the most influential factor among the four factors in the Bohai Sea. A specific correlation between temperature and the toxic effects of copper was identified, and WQCs were derived based on the identified correlation and the variations of the Bohai Sea's temperature in different seasons by species sensitivity distribution (SSD) method. Under the condition of the winter, spring, autumn, and summer with an average water temperature of 0.09, 15.96, 17.83, and 24.87 °C, the obtained short-term water quality criteria (SWQCs) were 44.29, 4.70, 4.31, and 3.33 μg/L; the long-term water quality criteria (LWQCs) were 18.14, 1.93, 1.77 and 1.36 μg/L. The findings indicated the importance of introducing specific environmental conditions during the derivation process. This work could provide valuable information for pollution prevention and aquatic life protection in the Bohai Sea and provide a valuable reference for the derivation of criteria in other regions alike.
Afficher plus [+] Moins [-]