Affiner votre recherche
Résultats 1-10 de 21
Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand
2010
Nunn, A.J. | Cieslik, S. | Metzger, U. | Wieser, G. | Matyssek, R.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.
Afficher plus [+] Moins [-]Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
Afficher plus [+] Moins [-]Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils
2017
Xu, Zhi-Min | Li, Qu-Sheng | Yang, Ping | Ye, Han-Jie | Chen, Zi-Shuo | Guo, Shi-Hong | Wang, Lili | He, Bao-Yan | Zeng, E. Y. (Eddy Y.)
This study aimed to investigate the difference of osmoregulation between two edible amaranth cultivars, Liuye (high Cd accumulator) and Quanhong (low Cd accumulator), under salinity stress and determine the effects of such difference on Cd accumulation. A pot experiment was conducted to expose the plants to sewage-irrigated garden soil (mean 2.28 mg kg⁻¹ Cd) pretreated at three salinity levels. Under salinity stress, the concentrations of Cd in the two cultivars were significantly elevated compared with those in the controls, and the Cd concentration in Liuye was statistically higher than that in Quanhong (p < 0.05). Salinity-induced osmoregulation triggered different biogeochemical processes involved in Cd mobilization in the rhizosphere soil, Cd absorption, and translocation by the two cultivars. Rhizosphere acidification induced by an imbalance of cation over anion uptake was more serious in Liuye than in Quanhong, which obviously increased soil Cd bioavailability. Salinity-induced injuries in the cell wall pectin and membrane structure were worse in Liuye than in Quanhong, increasing the risk of Cd entering the protoplasts. The chelation of more cytoplasmic Cd²⁺ with Cl⁻ ions in the roots of Liuye promoted Cd translocation into the shoots. Furthermore, the less organic solutes in the root sap of Liuye than in that of Quanhong also favored Cd translocation into the shoots. Hence, osmoregulation processes can be regarded as important factors in reducing Cd accumulation in crop cultivars grown on saline soils.
Afficher plus [+] Moins [-]Ozone uptake by adult urban trees based on sap flow measurement
2012
Wang, Hua | Zhou, Weiqi | Wang, Xiaoke | Gao, Fuyuan | Zheng, Hua | Tong, Lei | Ouyang, Z. (Zhiyun)
The O₃ uptake in 17 adult trees of six urban species was evaluated by the sap flow-based approach under free atmospheric conditions. The results showed very large species differences in ground area scaled whole-tree ozone uptake ( [Formula: see text] ), with estimates ranging from 0.61 ± 0.07 nmol m⁻² s⁻¹ in Robinia pseudoacacia to 4.80 ± 1.04 nmol m⁻² s⁻¹ in Magnolia liliiflora. However, average [Formula: see text] by deciduous foliages was not significantly higher than that by evergreen ones (3.13 vs 2.21 nmol m⁻² s⁻¹, p = 0.160). Species of high canopy conductance for O₃ ( [Formula: see text] ) took up more O₃ than those of low [Formula: see text] , but that their sensitivity to vapour pressure deficit (D) were also higher, and their [Formula: see text] decreased faster with increasing D, regardless of species. The responses of [Formula: see text] to D and total radiation led to the relative high flux of O₃ uptake, indicating high ozone risk for urban tree species.
Afficher plus [+] Moins [-]X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena
2021
Pons, Marie-Laure | Collin, Blanche | Doelsch, Emmanuel | Chaurand, Perrine | Fehlauer, Till | Levard, Clément | Keller, Catherine | Rose, Jerome
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg⁻¹ Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to –O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Afficher plus [+] Moins [-]Pesticide treatment reduces hydrophobic pollutant contamination in Cucurbita pepo through competitive binding to major latex-like proteins
2020
Fujita, Kentaro | Kondoh, Yasumitsu | Honda, Kaori | Haga, Yuki | Osada, Hiroyuki | Matsumura, Chisato | Inui, Hideyuki
Hydrophobic pollutants are still present in agricultural soil. The Cucurbitaceae family accumulates hydrophobic pollutants through roots, resulting in the contamination of aerial parts. Major latex-like proteins (MLPs), found in the Cucurbitaceae family, play an important role in the contamination by binding to these hydrophobic pollutants. Thus far, efficient cultivation methods for the production of safe crops with lower concentrations of hydrophobic pollutants have not been developed. Herein, we competitively inhibited the binding of MLPs to hydrophobic pollutants, pyrene and dieldrin, in roots by using MLP binding pesticides. By conducting a chemical array screening, we found that MLPs bound compounds with indole- and quinazoline-like structures. Commercially available pesticides amisulbrom and pyrifluquinazon, which possess such structures, successfully inhibited the binding of MLPs to pyrene and dieldrin in vitro. When zucchini plants were cultivated in the contaminated soil with 1.25 mmol/kg pyrene and 12.5 μmol/kg dieldrin, the concentration of pyrene and dieldrin in xylem sap was significantly decreased by 30% and 15%, respectively. Our results demonstrate that the pesticides binding to MLPs competitively inhibited the binding of MLPs to pyrene and dieldrin in roots, resulting in the reduction of overall contamination. This study proposes a novel approach to cultivate safer crops and advances the utilization of unknown functions of pesticides.
Afficher plus [+] Moins [-]Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress – Means of preventing enhanced O3 uptake under high O3 exposure?
2015
Matyssek, R. | Baumgarten, M. | Hummel, U. | Häberle, K.-H. | Kitao, M. | Wieser, G.
Spatio-temporally consistent O3 doses are demonstrated in adult Fagus sylvatica from the Kranzberg Forest free-air fumigation experiment, covering cross-canopy and whole-seasonal scopes through sap flow measurement. Given O3-driven closure of stomata, we hypothesized enhanced whole-tree level O3 influx to be prevented under enhanced O3 exposure. Although foliage transpiration rate was lowered under twice-ambient O3 around noon by 30% along with canopy conductance, the hypothesis was falsified, as O3 influx was raised by 25%. Nevertheless, the twice-ambient/ambient ratio of O3 uptake was smaller by about 20% than that of O3 exposure, suggesting stomatal limitation of uptake. The O3 response was traceable from leaves across branches to the canopy, where peak transpiration rates resembled those of shade rather than sun branches. Rainy/overcast-day and nightly O3 uptake is quantified and discussed. Whole-seasonal canopy-level validation of modelled with sap flow-derived O3 flux becomes available in assessing O3 risk for forest trees.
Afficher plus [+] Moins [-]The use of kelp sieve tube sap metal composition to characterize urban runoff in southern California coastal waters
2011
Fink, Laurel A. | Manley, Steven L.
This study introduces an innovative method for biomonitoring using giant kelp (Macrocystis pyrifera) sieve tube sap (STS) metal concentrations as an indication of pollution influence. STS was sampled from fronds collected from 10 southern California locations, including two reference sites on Santa Catalina Island. Using ICP-MS methodology, STS concentrations of 17 different metals were measured (n=495). Several metals associated with pollution showed the highest STS concentrations and most seasonal variation from populations inside the Port of Los Angeles/Long Beach. Lowest concentrations were measured at less-urbanized areas: Santa Catalina Island and Malibu. Some metals showed a spatial gradient in STS metal concentration with increasing distance from point sources (i.e. Los Angeles River). Cluster analyses indicate that polluted seawater may affect kelp uptake of metals essential for cellular function. Results show that this method can be useful in describing bioavailable metal pollution with implications for accumulation within an important ecosystem.
Afficher plus [+] Moins [-]Cadmium Tolerance Mechanism of Solanum nigrum Based on Subcellular Distribution and Organic Acid Content
2022
Hua, Li | Liang, Zhiyong | Wei, Ting
Solanum nigrum (S. nigrum), a newly discovered Cd-hyperaccumulator, has attracted the attention of many scholars. The present experiment was aimed to explore the difference of Cd accumulation ability among different S. nigrum genotypes and reveal the underlying mechanism. Three different genotypes of S. nigrum were grown in a hydroponic system with different Cd levels (0, 10,25, 50, 100 mg L⁻¹, respectively); the Cd content, subcellular distribution of Cd, net Cd fluxes of in S. nigrum roots, and organic acid content in S. nigrum leaves were investigated. The results showed that Cd was more abundant in cell sap and cell wall fraction than that in organelle fraction. The content of organic acids in three species of S. nigrum was citric acid > tartaric acid > acetic acid > malic acid > oxalic acid. Non-destructive micrometry (NMT) revealed that the net Cd fluxes of the same species of S. nigrum first increased and then decreased with increasing of Cd concentration. And among all tested genotypes, the net Cd fluxes were stronger in the genotype of S. nigrum (HZ).
Afficher plus [+] Moins [-]Studies on the influence of natural resource utilization by humans on foraging behavior of honey bees at rural ecosystems
2021
Soorangkattan, Saravanan | Nalluchamy, Kamala Dhasan | Arumugam, Sudha | Sivagnanam, Chandrasekaran | Thulasinathan, Boobalan | Ramu, Satheesh Murugan | Alagarsamy, Arun | Muthuramalingam, Jothi Basu
Human utilization of natural resources acts as a main driver in altering the ecosystem service and functions. Apart from indirect influence, these human activities also tempt for the behavioral shift in insects especially in honey bees. The foraging behavior of honey bees from the natural floral resources to the man-made food sources eventually degrade the ecosystem’s services and cause declining of the honey bee population. Understanding this foraging behavior of bees could help in opting for viable conservation measures for honey bees. In order to understand the influence of human utilization of natural resources on the foraging behavior of bees and its negative impacts on the bee population, the study was carried out in the sites where humans collect palm sap. Palm sap collectors used different containers (mud pots and pet bottles) to collect the palm sap from Borassus flabellifer. The number of containers per tree, volume of palm sap per container/tree, bee visiting frequency, and bee mortality per container/tree were measured at different ecosystems. Palm saps were collected freshly and volatile compounds of samples were identified using FT-IR and GC-MS analysis. The identified volatile compounds were used to study the interaction between volatile compounds and odorant-binding proteins (OBPs) of honey bees for understanding the foraging behavior of bees using in silico approach. Our results clearly showed that bee visitation frequency was directly correlated (0.94) with bee mortality in palm sap in different study sites. The average number of bee mortality was recorded as 491.2 ± 23.48 bees per container/tree/day. GC-MS analyses revealed the presence of 35 volatile compounds in collected palm sap from different study sites. Furthermore, molecular docking studies were performed for all 35 palm volatile compounds OBPs of honey bees to analyze their binding affinities. Docking studies showed that 1-methylbutylmandelate and 6-(hydroxymethyl)-1,4,4-trimethylbicyclo [3.1.0] hexan-2-ol have high binding affinity with OBP residues of bees. These volatile compounds might act as an attractant for bee populations for their foraging behavior. Based on this study, we conclude that human utilization of palm sap has created new ecological niches which highly alters the foraging behavior of bees and results in declining bee populations.
Afficher plus [+] Moins [-]