Affiner votre recherche
Résultats 1-10 de 27
Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China
2020
Liu, Kangkang | Li, Shanshan | Qian, Zhengmin (Min) | Dharmage, Shyamali C. | Bloom, Michael S. | Heinrich, Joachim | Jalaludin, Bin | Markevych, Iana | Morawska, L. (Lidia) | Knibbs, Luke D. | Hinyard, Leslie | Xian, Hong | Liu, Shan | Lin, Shao | Leskinen, Ari | Komppula, Mika | Jalava, Pasi | Roponen, Marjut | Hu, Liwen | Zeng, Xiao-Wen | Hu, Wenbiao | Chen, Gongbo | Yang, Bo-Yi | Guo, Yuming | Dong, Guang-Hui
Little information exists on interaction effects between air pollution and influenza vaccination on allergic respiratory diseases. We conducted a large population-based study to evaluate the interaction effects between influenza vaccination and long-term exposure to ambient air pollution on allergic respiratory diseases in children and adolescents.A cross-sectional study was investigated during 2012–2013 in 94 schools from Seven Northeastern Cities (SNEC) in China. Questionnaires surveys were obtained from 56 137 children and adolescents aged 2–17 years. Influenza vaccination was defined as receipt of the influenza vaccine. We estimated air pollutants exposure [nitrogen dioxide (NO2) and particulate matter with aerodynamic diameters ≤1 μm (PM1), ≤2.5 μm (PM2.5) and ≤10 μm (PM10)] using machine learning methods. We employed two-level generalized linear mix effects model to examine interactive effects between influenza vaccination and air pollution exposure on allergic respiratory diseases (asthma, asthma-related symptoms and allergic rhinitis), after controlling for important covariates.We found statistically significant interactions between influenza vaccination and air pollutants on allergic respiratory diseases and related symptoms (doctor-diagnosed asthma, current wheeze, wheeze, persistent phlegm and allergic rhinitis). The adjusted ORs for doctor-diagnosed asthma, current wheeze and allergic rhinitis among the unvaccinated group per interquartile range (IQR) increase in PM1 and PM2.5 were significantly higher than the corresponding ORs among the vaccinated group [For PM1, doctor-diagnosed asthma: OR: 1.89 (95%CI: 1.57–2.27) vs 1.65 (95%CI: 1.36–2.00); current wheeze: OR: 1.50 (95%CI: 1.22–1.85) vs 1.10 (95%CI: 0.89–1.37); allergic rhinitis: OR: 1.38 (95%CI: 1.15–1.66) vs 1.21 (95%CI: 1.00–1.46). For PM2.5, doctor-diagnosed asthma: OR: 1.81 (95%CI: 1.52–2.14) vs 1.57 (95%CI: 1.32–1.88); current wheeze: OR: 1.46 (95%CI: 1.21–1.76) vs 1.11 (95%CI: 0.91–1.35); allergic rhinitis: OR: 1.35 (95%CI: 1.14–1.60) vs 1.19 (95%CI: 1.00–1.42)]. The similar patterns were observed for wheeze and persistent phlegm. The corresponding p values for interactions were less than 0.05, respectively. We assessed the risks of PM1-related and PM2.5-related current wheeze were decreased by 26.67% (95%CI: 1.04%–45.66%) and 23.97% (95%CI: 0.21%–42.08%) respectively, which was attributable to influenza vaccination (both p for efficiency <0.05).Influenza vaccination may play an important role in mitigating the detrimental effects of long-term exposure to ambient air pollution on childhood allergic respiratory diseases. Policy targeted at increasing influenza vaccination may yield co-benefits in terms of reduced allergic respiratory diseases.
Afficher plus [+] Moins [-]Environmental contamination in an Australian mining community and potential influences on early childhood health and behavioural outcomes
2015
Dong, Chenyin | Taylor, Mark Patrick | Kristensen, Louise Jane | Zahran, Sammy
Arsenic, cadmium and lead in aerosols, dusts and surface soils from Australia's oldest continuous lead mining town of Broken Hill were compared to standardised national childhood developmental (year 1) and education performance measures (years 3,5,7,9). Contaminants close to mining operations were elevated with maximum lead levels in soil: 8900 mg/kg; dust wipe: 86,061 μg/m2; dust deposition: 2950 μg/m2/day; aerosols: 0.707 μg/m3. The proportion of children from Broken Hill central, the area with the highest environmental contamination, presented with vulnerabilities in two or more developmental areas at 2.6 times the national average. Compared with other school catchments of Broken Hill, children in years 3 and 5 from the most contaminated school catchment returned consistently the lowest educational scores. By contrast, children living and attending schools associated with lower environmental contamination levels recorded higher school scores and lower developmental vulnerabilities. Similar results were identified in Australia's two other major lead mining and smelting cities of Port Pirie and Mount Isa.
Afficher plus [+] Moins [-]Associations between standardized school performance tests and mixtures of Pb, Zn, Cd, Ni, Mn, Cu, Cr, Co, and V in community soils of New Orleans
2012
Zahran, Sammy | Mielke, Howard W. | Weiler, Stephan | Hempel, Lynn | Berry, Kenneth J. | Gonzales, Christopher R.
In New Orleans a strong inverse association was previously identified between community soil lead and 4th grade school performance. This study extends the association to zinc, cadmium, nickel, manganese, copper, chromium, cobalt, and vanadium in community soil and their comparative effects on 4th grade school performance. Adjusting for poverty, food security, racial composition, and teacher-student ratios, regression results show that soil metals variously reduce and compress student scores. Soil metals account for 22%–24% while food insecurity accounts for 29%–37% of variation in school performance. The impact on grade point averages were Ni > Co > Mn > Cu ∼Cr ∼ Cd > Zn > Pb, but metals are mixtures in soils. The quantities of soil metal mixtures vary widely across the city with the largest totals in the inner city and smallest totals in the outer city. School grade point averages are lowest where the soil metal mixtures and food insecurity are highest.
Afficher plus [+] Moins [-]Greenness around schools associated with lower risk of hypertension among children: Findings from the Seven Northeastern Cities Study in China
2020
Xiao, Xiang | Yang, Bo-Yi | Hu, Liwen | Markevych, Iana | Bloom, Michael S. | Dharmage, Shyamali C. | Jalaludin, Bin | Knibbs, Luke D. | Heinrich, Joachim | Morawska, L. (Lidia) | Lin, Shao | Roponen, Marjut | Guo, Yuming | Lam Yim, Steve Hung | Leskinen, Ari | Komppula, Mika | Jalava, Pasi | Yu, Hong-Yao | Zeeshan, Mohammed | Zeng, Xiao-Wen | Dong, Guang-Hui
Evidence suggests that residential greenness may be protective of high blood pressure, but there is scarcity of evidence on the associations between greenness around schools and blood pressure among children. We aimed to investigate this association in China. Our study included 9354 children from 62 schools in the Seven Northeastern Cities Study. Greenness around each child’s school was measured by NDVI (Normalized Difference Vegetation Index) and SAVI (Soil-Adjusted Vegetation Index). Particulate matter ≤ 1 μm (PM1) concentrations were estimated by spatiotemporal models and nitrogen dioxide (NO2) concentrations were collected from air monitoring stations. Associations between greenness and blood pressure were determined by generalized linear and logistic mixed-effect models. Mediation by air pollution was assessed using mediation analysis. Higher greenness was consistently associated with lower blood pressure. An increase of 0.1 in NDVI corresponded to a reduction in SBP of 1.39 mmHg (95% CI: 1.86, −0.93) and lower odds of hypertension (OR = 0.76, 95% CI: 0.69, 0.82). Stronger associations were observed in children with higher BMI. Ambient PM1 and NO2 mediated 33.0% and 10.9% of the association between greenness and SBP, respectively. In summary, greater greenness near schools had a beneficial effect on blood pressure, particularly in overweight or obese children in China. The associations might be partially mediated by air pollution. These results might have implications for policy makers to incorporate more green space for both aesthetic and health benefits.
Afficher plus [+] Moins [-]Assessment of airborne polycyclic aromatic hydrocarbons in a megacity of South China: Spatiotemporal variability, indoor-outdoor interplay and potential human health risk
2018
Hu, Yuan-Jie | Bao, Lian-Jun | Huang, Chun-Li | Li, Shao-Meng | Liu, Peter | Zeng, E. Y. (Eddy Y.)
Although a number of studies have assessed the occurrence of atmospheric polycyclic aromatic hydrocarbons (PAHs) in indoor environment, few studies have systemically examined the indoor-outdoor interplay of size-dependent particulate PAHs and potential health risk based on daily lifestyles. In the present study, size-dependent particle and gaseous samples were collected both indoors and outdoors within selected schools, offices and residences located in three districts of Guangzhou, China with different urbanization levels during the dry and wet weather seasons. Results from measurements of PAHs showed that higher total PAH concentrations occurred in residential areas than in other settings and in indoor than in outdoor environments. Compositional profiles and size distribution patterns of particle-bound PAHs were similar indoors and outdoors, predominated by 4-and 5-ring PAHs and the 0.56–1.0 μm particle fraction. Statistical analyses indicated that outdoor sources may have contributed to 38–99% and 62–100% of the variations for indoor particle-bound and gaseous PAH concentrations, respectively. Incremental life cancer risk (ILCR) from human exposure to indoor and outdoor PAHs based on different lifestyles followed the order of adults > children > adolescents > seniors. All average ILCR values for four age groups were below the lower limit of the Safe Acceptable Range (10−6). In addition, the ILCR value for adults (average: 7.2 × 10−7; 95% CI: 5.4 × 10−8‒2.5 × 10−6), estimated from outdoor air PAH levels with 24-h exposure time, was significantly higher than our assessment results (average: 5.9 × 10−7; 95% CI: 6.3 × 10−8‒1.9 × 10−6), suggesting the significance of assessing human inhalation exposure risks of indoor and outdoor PAHs in urban air based on daily lifestyles.
Afficher plus [+] Moins [-]Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school
2017
A few studies have found associations between the exposure to traffic-related air pollution at school and/or home and cognitive development. The impact on cognitive development of the exposure to air pollutants during commuting has not been explored. We aimed to assess the role of the exposure to traffic-related air pollutants during walking commute to school on cognitive development of children. We performed a longitudinal study of children (n = 1,234, aged 7–10 y) from 39 schools in Barcelona (Catalonia, Spain) who commuted by foot to school. Children were tested four times during a 12-month follow-up to characterize their developmental trajectories of working memory (d’ of the three-back numbers test) and inattentiveness (hit reaction time standard error of the Attention Network Test). Average particulate matter ≤2.5 μm (PM2.5), Black Carbon (BC) and NO2 concentrations were estimated using Land Use Regression for the shortest walking route to school. Differences in cognitive growth were evaluated by linear mixed effects models with age-by-pollutant interaction terms. Exposure to PM2.5 and BC from the commutes by foot was associated with a reduction in the growth of working memory (an interquartile range increase in PM2.5 and BC concentrations decreased the annual growth of working memory by 5.4 (95% CI [-10.2, -0.6]) and 4.6 (95% CI [-9.0, -0.1]) points, respectively). The findings for NO2 were not conclusive and none of the pollutants were associated with inattentiveness. Efforts should be made to implement pedestrian school pathways through low traffic streets in order to increase security and minimize children's exposure to air pollutants.
Afficher plus [+] Moins [-]First measurements of source apportionment of organic aerosols in the Southern Hemisphere
2014
Crilley, Leigh R. | Ayoko, G. A. (Godwin A.) | Morawska, L. (Lidia)
An Aerodyne Aerosol Mass Spectrometer was deployed at five urban schools to examine spatial and temporal variability of organic aerosols (OA) and positive matrix factorization (PMF) used for the first time in the Southern Hemisphere to apportion the sources of the OA across an urban area. The sources identified included hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA). At all sites, the main source was OOA, which accounted for 62–73% of the total OA mass and was generally more oxidized compared to those reported in the Northern Hemisphere. This suggests that there are differences in aging processes or regional sources in the two hemispheres. Unlike HOA and BBOA, OOA demonstrated instructive temporal variations but not spatial variation across the urban area. Application of cluster analysis to the PMF-derived sources offered a simple and effective method for qualitative comparison of PMF sources that can be used in other studies.
Afficher plus [+] Moins [-]Open Air Laboratories (OPAL): A community-driven research programme
2011
Davies, L. | Bell, J.N.B. | Bone, J. | Creagh-Henry, M. (May) | Hill, L. | Howard, C. | Hobbs, S.J. | Jones, D.T. | Power, S.A. | Rose, N. | Ryder, C. | Seed, L. | Stevens, G. | Toumi, R. | Voulvoulis, N. | White, P.C.L.
OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an inter-disciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.
Afficher plus [+] Moins [-]Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México)
2011
Raysoni, Amit U. | Sarnat, Jeremy A. | Sarnat, Stefanie Ebelt | García, José Humberto | Holguin, Fernando | Flores-Luevano, Silvia | Li, Wen-Whai
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO₂) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.–Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO₂ appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.
Afficher plus [+] Moins [-]Indoor air quality in the primary school of China—results from CIEHS 2018 study
2021
Zhu, Yuan-duo | Li, Xu | Fan, Lin | Li, Li | Wang, Jiao | Yang, Wen-jing | Wang, Lin | Yao, Xiao-yuan | Wang, Xian-liang
Indoor air quality ((IAQ) in classrooms was associated with the daily exposure of school-age children who are particularly vulnerable to air pollutants exposure, while few data exist to evaluate classroom indoor air quality nationwide in China. The subsample of the CIEHS 2018 study was performed in 66 classrooms of 22 primary schools nationwide in China. Temperature, relative humidity, PM₂.₅, PM₁₀, CO₂, CO, formaldehyde concentrations, bacteria and fungi were detected in all classrooms by using the instruments that meet the specified accuracy. The ratios of indoor to outdoor (I/O) of PM₂.₅ were calculated in each classroom to identify whether the indoor environment the pollutants comes from outdoors. The indoor PM₂.₅, PM₁₀, CO, HCHO, bacteria and fungi GM concentration are 47.40 μg/m³, 72.91 μg/m³, 0.37 mg/m³, 0.02 mg/m³, 347.51 CFU/m³ and 362.76 CFU/m³, respectively. We observed that there were 66.5%, 52.6%, 22.4%, 1.8%, and 9.6% of the classrooms that exceeded the guideline values of PM₂.₅, PM₁₀, CO₂, HCHO, and bacteria, respectively. It should be attention that all of the classroom's PM₂.₅ concentrations in Shijiazhuang and Nanning, PM₁₀ concentrations in Nanning, CO₂ concentration in Lanzhou were exceeded the suggested values. Bacteria contamination in Shijiazhuang's classrooms is also serious. All classroom CO concentrations meet the requirement. The results indicated that classroom indoor PM₂.₅ was significantly positively correlated with indoor PM₁₀ and CO₂, while was negative correlated with temperature, CO, and fungi. Our results suggest that indoor air pollution in classrooms was a severe problem in Chinese primary schools. It is necessary to strengthen ventilation in the classroom to improve indoor air quality. What's more, a healthy learning environment should be created for primary school students.
Afficher plus [+] Moins [-]