Affiner votre recherche
Résultats 1-10 de 156
Distribution of rare earth elements (REEs) and their roles in plant growth: A review
2022
Tao, Yue | Shen, Lu | Feng, Chong | Yang, Rongyi | Qu, Jianhua | Ju, Hanxun | Zhang, Ying
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
Afficher plus [+] Moins [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Afficher plus [+] Moins [-]Bioremediation of aromatic hydrocarbons contaminated soil from industrial site using surface modified amino acid enhanced biosurfactant
2021
Christopher, Judia Magthalin | Sridharan, Rajalakshmi | Somasundaram, Swarnalatha | Ganesan, Sekaran
Surface modified lipopeptide biosurfactant (BS) with enhancement of amino acids was produced using Bacillus Malacitensis. The aromatic hydrocarbons from contaminated soil were removed by BS soil washing process and bioremediation using activated functionalized carbon-BS matrix (AFC-BS). The Central Composite Design (CCD) showed the optimum time100 h; pH 7; temperature 30°C on maximum yield of BS. The amino acid profiling of BS reveals the enhancement of amino acids especially polar amino acids and its importance in the formation of micellar structure for the tight packing of aromatic hydrocarbons from industrial contaminated soil. AFC-BS matrix was implanted directly into the contaminated soil for 28 days and found 61.80 % of Total Petroleum Hydrocarbon (TPH) removal efficiency which is high compared to the AFC treated soil. The compounds were extracted from contaminated soil and AFC-BS matrix, found similar peaks in high performance liquid chromatography, which reveals the ability of BS to remove aromatic contaminants. The soil toxicity was also analyzed by seed germination and found improvement in the growth of seeds. The germination of seeds increased from 60 % to 100 % and the phytotoxicity of root and shoot was reduced from 89.50 %, 88.45 % to12.55 %, 11.87 % respectively.
Afficher plus [+] Moins [-]Influence of sawdust addition on the toxic effects of cadmium and copper oxide nanoparticles on Vigna radiata seeds
2021
Subpiramaniyam, Sivakumar | Hong, Sung Chul | Yi, Pyŏng-in | Jang, Seong-Ho | Suh, Jeong-Min | Jung, Eun-Sang | Park, Je-Sung | Cho, Lae-Hyeon
Studies in the literature concern the toxicity of nanoparticles either in a Petri dish or in agar media-based tests. Therefore, for environmental relevance, individual and binary mixtures of metal oxide nanoparticles (M-NPs) cadmium oxide (CdO-NP) and copper oxide (CuO-NP) were tested in this study for their effect on Vigna radiata in soil with and without the addition of sawdust. Seed germination was 67% in 100 mg CuO-NP in soil without sawdust. Seeds failed to germinate in 100 mg CdO +100 mg CuO-NPs in soil without the addition of sawdust and germination was 83% at the same concentration in soil with sawdust. In sawdust added to soil, when compared with control (soil without M-NPs), the maximum reduction in shoot (82%) and root (80%) length and wet (61%) and dry (54%) weight of plant was recorded in CdO-NP treated soil. Similarly, compared with control (soil without sawdust and M-NPs), the percent reduction in shoot (61%) and root (70%) length and wet (44%) and dry (48%) weight was highest in CdO-NP treated soil not supplemented with sawdust. In a binary mixture test (CdO-NP + CuO-NP), the addition of sawdust promoted the above plant growth parameters compared with individual CdO-NP and CuO-NP tests. Cadmium (511 mg kg⁻¹ for individual and 303 mg kg⁻¹ for binary mixture tests) and Cu (953 mg kg⁻¹ for individual and 2954 mg kg⁻¹ for binary mixture tests) accumulation was higher in plants grown in soil without sawdust. The beneficial effect of sawdust addition was observed in seed germination, plant growth, and metal accumulation. With or without sawdust, the binary mixture of CdO and CuO was antagonistic. These results indicate that sawdust can prevent M-NP-induced toxicity and reduce metal accumulation in plant tissues.
Afficher plus [+] Moins [-]The influence of salinization on seed germination and plant growth under mono and polyculture
2020
Sea level rise induced-salinization is lowering coastal soils productivity. In order to assess the effects that increased salinity may provoke in terrestrial plants, using as model species: Trifolium pratense, Lolium perenne, Festuca arundinacea and Vicia sativa, two specific objectives were targeted: i) to determine the sensitivity of the selected plant species to increased salinity (induced by seawater-SW or by NaCl, proposed as a surrogate of SW) and, ii) to assess the influence of salinization in total biomass under different agricultural practices (mono- or polycultures).The four plant species exhibited a higher sensitivity to NaCl than to SW. Festuca arundinacea was the most tolerant species to NaCl (EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ of 18.6 and 10.5 mScm⁻¹, respectively). The other three species presented effective conductivities in the same order of magnitude and, in general, with 95% confidence limits overlapping. Soil moistened with SW caused no significant adverse effects on seed germination and growth of L. perenne. Similar to NaCl, the other three species, in general, presented a similar sensitivity to SW exposure with EC₅₀,ₛₑₑd gₑᵣₘᵢₙₐₜᵢₒₙ and EC₅₀,gᵣₒwₜₕ within the same order of magnitude and with confidence limits overlapping.The agricultural practice (mono-vs polyculture) showed some influence on the biomass of each plant species. When considering total productivity, for aerial and root biomass, it was higher in control comparatively to salinization conditions. Under salinization stress, the practice of polyculture was associated with a higher aerial and root total biomass than monocultures (for instance with combinations with T. pratense and F. arundinacea).Results suggest that the effects of salinity stress on total productivity may be minimized under agricultural practices of polyculture. Thus, this type of cultures should be encouraged in low-lying coastal ecosystems that are predicted to suffer from salinization caused by seawater intrusions.
Afficher plus [+] Moins [-]Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability
2020
Li, Yunyi | Tian, Xiaoyu | Liang, Jialiang | Chen, Xinlei | Ye, Jiangyu | Liu, Yangsheng | Liu, Yuanyuan | Wei, Yunmei
A large amounts of arable land is facing a high risk of hexavalent chromium (Cr(VI)) pollution, which requires remediation using a low toxic agent. In this study, the remediation effect of amorphous iron pyrite (FeS₂₍ₐₘ₎) on Cr(VI) in Cr(VI)-contaminated soil was evaluated by systematically analyzing the variation of the leachability, bioaccessibility, phytotoxicity, and long-term stability of the remediated soil. The effectiveness of FeS₂₍ₐₘ₎ on the leachability was assessed by alkaline digestion and the toxicity characteristic leaching procedure (TCLP); the effect on the bioaccessibility was evaluated via the physiologically based extraction test (PBET) and the Tessier sequential extraction; the effect on the phytotoxicity was assessed via phytotoxicity bioassay (seed germination experiments) based on rape (Brassica napus L.) and cucumber (Cucumis Sativus L.), and the long-term stability of the Cr(VI)-remediated soil was appraised using column tests with groundwater and acid rain as the influents. The results show that FeS₂₍ₐₘ₎, with a stoichiometry of 4× exhibited a high efficiency in the remediation of Cr(VI) and decreased its leachability and bioaccessibility during the 30-day remediation period. In addition, seed germination rate, accumulation and translocation of Cr, and root and shoot elongation of rape and cucumber of remediated soil are not significantly different from those of clean soil, illustrating that FeS₂₍ₐₘ₎ is suitable for remediating Cr(VI) contaminated arable soil. The stabilization of Cr(VI) in contaminated soil using FeS₂₍ₐₘ₎ was maintained for 1575 days. The long-term effectiveness was further confirmed by the increasing amount of free Fe and Mn in the effluent and the decreasing redox potential. In summary, FeS₂₍ₐₘ₎ has an excellent efficiency for the remediation of Cr(VI), demonstrating it is a very promising alternative for use in the contaminated arable soil.
Afficher plus [+] Moins [-]Potential toxicity of improperly discarded exhausted photovoltaic cells
2016
Motta, C.M. | Cerciello, R. | De Bonis, S. | Mazzella, V. | Cirino, P. | Panzuto, R. | Ciaravolo, M. | Simoniello, P. | Toscanesi, M. | Trifuoggi, M. | Avallone, B.
Low tech photovoltaic panels (PVPs) installed in the early ’80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high.
Afficher plus [+] Moins [-]Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction
2008
Darbah, Joseph N.T. | Kubiske, Mark E. | Nelson, Neil | Oksanen, Elina | Vapaavuori, Elina | Karnosky, David F.
We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO(2)+O(3)) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO(2) may have a largely positive impact on forest tree reproduction and regeneration while elevated O(3) will likely have a negative impact.
Afficher plus [+] Moins [-]A biocide delivery system composed of nanosilica loaded with neem oil is effective in reducing plant toxicity of this biocide
2022
Goetten de Lima, Gabriel | Wilke Sivek, Tainá | Matos, Mailson | Lundgren Thá, Emanoela | de Oliveira, Ketelen Michele Guilherme | Rodrigues de Souza, Irisdoris | de Morais de Lima, Tielidy Angelina | Cestari, Marta Margarete | Esteves Magalhães, Washington Luiz | Hansel, Fabrício Augusto | Morais Leme, Daniela
One possible way to reduce the environmental impacts of pesticides is by nanostructuring biocides in nanocarriers because this promotes high and localized biocidal activity and can avoid toxicity to non-target organisms. Neem oil (NO) is a natural pesticide with toxicity concerns to plants, fish, and other organisms. Thus, loading NO in a safe nanocarrier can contribute to minimizing its toxicity. For this study, we have characterized the integrity of a nanosilica-neem oil-based biocide delivery system (SiO₂NP#NO BDS) and evaluated its effectiveness in reducing NO toxicity by the Allium cepa test. NO, mainly consisted of unsaturated fatty acids, was well binded to the SiO₂NP with BTCA crosslinker. Overall, this material presented all of its pores filled with the NO with fatty acid groups at both the surface and bulk level of the nanoparticle. The thermal stability of NO was enhanced after synthesis, and the NO was released as zero-order model with a total of 20 days without burst release. The SiO₂NP#NO BDS was effective in reducing the individual toxicity of NO to the plant system. NO in single form inhibited the seed germination of A. cepa (EC₅₀ of 0.38 g L⁻¹), and the effect was no longer observed at the BDS condition. Contrarily to the literature, the tested NO did not present cyto- and geno-toxic effects in A. cepa, which may relate to the concentration level and composition.
Afficher plus [+] Moins [-]Visible-light reduced silver nanoparticles’ toxicity in Allium cepa test system
2020
Souza, Irisdoris R. | Silva, Lucas R. | Fernandes, Letícia S.P. | Salgado, Lilian D. | Silva de Assis, Helena C. | Firak, Daniele S. | Bach, Larissa | Santos-Filho, Ronaldo | Voigt, Carmen L. | Barros, Ariana C. | Peralta-Zamora, Patricio | Mattoso, Ney | Franco, Celia Regina C. | Soares Medeiros, Lia C. | Marcon, Bruna H. | Cestari, Marta M. | Sant’Anna-Santos, Bruno F. | Leme, Daniela M.
Silver nanoparticles (AgNPs) are widely used in consumer products due to their antibacterial property; however, their potential toxicity and release into the environment raises concern. Based on the limited understanding of AgNPs aggregation behavior, this study aimed to investigate the toxicity of uncoated (uc-AgNP) and coated with polyvinylpyrrolidone (PVP-AgNP), at low concentrations (0.5–100 ng/mL), under dark and visible-light exposure, using a plant test system. We exposed Allium cepa seeds to both types of AgNPs for 4–5 days to evaluate several toxicity endpoints. AgNPs did not cause acute toxicity (i.e., inhibition of seed germination and root development), but caused genotoxicity and biochemical alterations in oxidative stress parameters (lipid peroxidation) and activities of antioxidant enzymes (superoxide dismutase and catalase) in light and dark conditions. However, the light exposure decreased the rate of chromosomal aberration and micronuclei up to 5.60x in uc-AgNP and 2.01x in PVP-AgNP, and 2.69x in uc-AgNP and 3.70x in PVP-AgNP, respectively. Thus, light exposure reduced the overall genotoxicity of these AgNPs. In addition, mitotic index alterations and morphoanatomical changes in meristematic cells were observed only in the dark condition at the highest concentrations, demonstrating that light also reduces AgNPs cytotoxicity. The light-dependent aggregation of AgNPs may have reduced toxicity by reducing the uptake of these NPs by the cells. Our findings demonstrate that AgNPs can be genotoxic, cytotoxic and induce morphoanatomical and biochemical changes in A. cepa roots even at low concentrations, and that visible-light alters their aggregation state, and decreases their toxicity. We suggest that visible light can be an alternative treatment to remediate AgNP residues, minimizing their toxicity and environmental risks.
Afficher plus [+] Moins [-]