Affiner votre recherche
Résultats 1-9 de 9
Does liming grasslands increase biomass productivity without causing detrimental impacts on net greenhouse gas emissions?
2022
Abdalla, Mohamed | Espenberg, Mikk | Zavattaro, Laura | Lellei-Kovacs, Eszter | Mander, Ulo | Smith, Kate | Thorman, Rachel | Damatirca, Claudia | Schils, Rene | ten-Berge, Hein | Newell-Price, Paul | Smith, Pete
Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.
Afficher plus [+] Moins [-]Claroideoglomus etunicatum affects the structural and functional genes of the rhizosphere microbial community to help maize resist Cd and La stresses
2022
Hao, Baihui | Zhang, Zhechao | Bao, Zhihua | Hao, Lijun | Diao, Fengwei | Li, Frank Yonghong | Guo, Wei
Arbuscular mycorrhizal fungi (AMF) and plant rhizosphere microbes reportedly enhance plant tolerance to abiotic stresses and promote plant growth in contaminated soils. The co-contamination of soil by heavy metals (e.g., Cd) and rare earth elements (e.g., La) represents a severe environmental problem. Although the influence of AMF in the phytoremediation of contaminated soils is well documented, the underlying interactive mechanisms between AMF and rhizosphere microbes are still unclear. We conducted a greenhouse pot experiment to evaluate the effects of AMF (Claroideoglomus etunicatum) on maize growth, nutrient and metal uptake, rhizosphere microbial community, and functional genes in soils with separate and combined applications of Cd and La. The purpose of this experiment was to explore the mechanism of AMF affecting plant growth and metal uptake via interactions with rhizosphere microbes. We found that C. etunicatum (i) significantly enhanced plant nutritional level and biomass and decreased metal concentration in the co-contaminated soil; (ii) significantly altered the structure of maize rhizosphere bacterial and fungal communities; (iii) strongly enriched the abundance of carbohydrate metabolism genes, ammonia and nitrate production genes, IAA (indole-3-acetic acid) and ACC deaminase (1-aminocyclopropane-1-carboxylate) genes, and slightly altered the abundance of P-related functional genes; (iv) regulated the abundance of microbial quorum sensing system and metal membrane transporter genes, thereby improving the stability and adaptability of the rhizosphere microbial community. This study provides evidence of AMF improving plant growth and resistance to Cd and La stresses by regulating plant rhizosphere microbial communities and aids our understanding of the underlying mechanisms.
Afficher plus [+] Moins [-]Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment?
2022
de Moraes Sá, João Carlos | Lal, R. | Briedis, Clever | de Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Burkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha⁻¹ in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha⁻¹ was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha⁻¹ with an environmental cost of USD 1968 ha⁻¹. The 0.59 Mg C ha⁻¹ yr⁻¹ sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha⁻¹ in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha⁻¹, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha⁻¹ yr⁻¹ was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
Afficher plus [+] Moins [-]Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis
2021
Liu, Bin | Wang, Xiaozhong | Ma, Lin | Chadwick, Dave | Chen, Xinping
The combined application of organic and synthetic nitrogen (N) fertilizers is being widely recommended in China’s vegetable systems to reduce reliance on synthetic N fertilizer. However, the effect of substituting synthetic fertilizer with organic fertilizer on vegetable productivity (yield, N uptake and nitrogen use efficiency) and reactive nitrogen (Nr) losses (N₂O emission, N leaching and NH₃ volatilization) remains unclear. A meta-analysis was performed using peer-reviewed papers published from 2000 to 2019 to comprehensively assess the effects of combined application of organic and synthetic N fertilizers. The results indicate that overall, the vegetable yield, N₂O emission and NH₃ volatilization were not significantly changed, whereas N leaching was reduced by 44.6% and soil organic carbon (SOC) concentration increased by 12.5% compared to synthetic N fertilizer alone. Specifically, when synthetic N substitution rates (SRs) were ≤70%, vegetable yields and SOC concentration were increased by 5.5%–5.6% and 13.1–18.0%, and N leaching was reduced by 41.6%–48.1%. At the high substitution rate (SR>70%), vegetable yield was reduced by 13.6%, N₂O emission was reduced by 14.3%, and SOC concentration increased by 16.4%. Mixed animal-plant sources of organic N preferentially increased vegetable yield and SOC concentration, and reduced N₂O emission and N leaching compared with single sources of organic-N. Greenhouse gas (GHG) emission was decreased by 28.4%–34.9% by combined applications of organic and synthetic N sources, relative to synthetic N fertilizer alone. We conclude that appropriate rates (SR ≤ 70%) of combined applications of organic and synthetic N fertilizers could improve vegetable yields, decrease Nr and GHG emission, and facilitate sustainable development of coupled vegetable-livestock systems.
Afficher plus [+] Moins [-]Polychlorinated naphthalenes (PCNs) in Chinese forest soil: Will combustion become a major source?
2015
Xu, Yue | Li, Jun | Zheng, Qian | Pan, Suhong | Luo, Chunling | Zhu, Haolin | Nizzetto, Luca | Zhang, Gan
We collected O- and A-horizon soil samples in 26 Chinese mountainous forests to investigate the content, spatial pattern, and potential sources of polychlorinated naphthalenes (PCNs). Spatial patterns were influenced mainly by the approximation to sources and soil organic contents. High concentrations often occurred close to populated or industrialized areas. Combustion-related activities contributed to PCN pollution. Relatively high proportions of CN-73 in northern China may be attributed to coke consumption, while CN-51 could be an indicator of biomass burning in Southwest China. There are evidences that PCNs may largely derived from unintentional production. If uncontrolled, UP-PCN (unintentionally produced PCNs) emissions could increase with industrial development. The abnormally high concentrations at Gongga and Changbai Mountains appear to be associated with the high efficient of forest filter of atmospheric contaminants at these densely forested sites. We question whether this is caused by ecotones between forests, and raise additional questions for future analyses.
Afficher plus [+] Moins [-]Does liming grasslands increase biomass productivity without causing detrimental impacts on net greenhouse gas emissions?
2022
Abdalla, Mohamed | Espenberg, Mikk | Zavattaro, Laura | Lellei-Kovacs, Eszter | Mander, Ulo | Smith, Kate | Thorman, Rachel | Damatirca, Claudia | Schils, Rene | ten-Berge, Hein | Newell-Price, Paul | Smith, Pete
Soil acidification has negative impacts on grass biomass production and the potential of grasslands to mitigate greenhouse gas (GHG) emissions. Through a global review of research on liming of grasslands, the objective of this paper was to assess the impacts of liming on soil pH, grass biomass production and total net GHG exchange (nitrous oxide (N2O), methane (CH4) and net carbon dioxide (CO2)). We collected 57 studies carried out at 88 sites and covering different countries and climatic zones. All of the studies examined showed that liming either reduced or had no effects on the emissions of two potent greenhouse gases (N2O and CH4). Though liming of grasslands can increase net CO2 emissions, the impact on total net GHG emission is minimal due to the higher global warming potential, over a 100-year period, of N2O and CH4 compared to that of CO2. Liming grassland delivers many potential advantages, which justify its wider adoption. It significantly ameliorates soil acidity, increases grass productivity, reduces fertiliser requirement and increases species richness. To realise the maximum benefit of liming grassland, we suggest that acidic soils should be moderately limed within the context of specific climates, soils and management.
Afficher plus [+] Moins [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
Afficher plus [+] Moins [-]The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis
2019
Zhang, Wushuai | Liang, Zhengyuan | He, Xiaoming | Wang, Xiaozhong | Shi, Xiaojun | Zou, Chunqin | Chen, Xinping
Application of controlled release urea (CRU) is recommended to reduce the undesirable environmental effects resulting from urea application. However, the overall effects of CRU on maize productivity and reactive nitrogen (N) losses remain unclear. Our global meta-analysis based on 866 observations of 120 studies indicated that application of CRU instead of urea (same N rate) increased maize yield by 5.3% and nitrogen use efficiency (NUE) by 24.1%, and significantly decreased nitrous oxide (N₂O) emission, N leaching and ammonia (NH₃) volatilization by 23.8%, 27.1% and 39.4%, respectively. The increase of NUE and reduction of N₂O emission by CRU application were greater with medium and high N rates (150 ≤ N < 200 and N ≥ 200 kg N ha⁻¹) than with low N rates. The reduction in N₂O emission and N leaching with CRU application were enhanced when soil organic carbon (SOC) content was <15.0 g kg⁻¹, and soil texture was medium or coarse. The reduction in N₂O emission and NH₃ volatilization with CRU were greater in soils with pH ≥ 6.0. We concluded that use of CRU should be encouraged for maize production, especially on light-textured soils with low organic matter content.
Afficher plus [+] Moins [-]Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services
2018
Potma Gonçalves, Daniel Ruiz | Carlos de Moraes Sá, João | Mishra, Umakant | Ferreira Furlan, Flávia Juliana | Ferreira, Lucimara Aparecida | Inagaki, Thiago Massao | Romaniw, Jucimare | de Oliveira Ferreira, Ademir | Briedis, Clever
Currently the land use and land use change (LULUC) emits 1.3 ± 0.5 Pg carbon (C) year⁻¹, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930–2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ± 130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ± 24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha⁻¹ year⁻¹) and no-till sequestered 30.4 ± 24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha⁻¹ year⁻¹) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.
Afficher plus [+] Moins [-]