Affiner votre recherche
Résultats 1-10 de 165
Use of a chemical equilibrium model to understand soil chemical processes that influence soil solution and surface water alkalinity.
1988
David M.B. | Reuss J.O. | Walthall P.M.
Soil Solution Nitrogen and Cations Influenced by (NH4)2SO4 Deposition in a Coniferous Forest Texte intégral
1997
Carnol, Monique | Ineson, Phil | Dickinson, A. L.
peer reviewed | The effects of chronically enhanced (NH(4))(2)SO(4) deposition on ion concentrations in soil solution and ionic fluxes were investigated in a Picea abies plot at Grizedale forest, NW England. Soil cores closed at the base and containing a ceramic suction cup sampler were 'roofed' and watered every 2 weeks with bulk throughfall collected in the field. Treatments consisted of the inclusion of living roots from mature trees in the lysimeters and increasing (NH(4))(2)SO(4) deposition (NS treatment) to ambient + 75 kg N ha(-1) a(-1). Rainfall, throughfall and soil solutions were collected every 2 weeks during 18 months, and analysed for major cations and anions. NO(3)(-) fluxes significantly increased following NS treatment, and were balanced by increased Al(3+) losses. Increased SO(4)(2-) concentrations played a minor role in controlling soil solution cation concentrations. The soil exchange complex was dominated by Al and, during the experimental period, cores of all treatments 'switched' from Ca(2+) to Al(3+) leaching, leading to mean [Formula: see text] molar ratios in soil solution of NS treated cores of 0.24. The experiment confirmed that the most sensitive soils to acidification (through deposition or changing environmental conditions) are those with low base saturation, and with a pH in the lower Ca, or Al buffer ranges.
Afficher plus [+] Moins [-]The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships Texte intégral
2021
The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships Texte intégral
2021
Contaminated soils are lands in Europe deemed less favourable for conventional agriculture. To overcome the problem of their poor fertility, bio-fertilization could be a promising approach. Soil inoculation with a choice of biological species (e.g. earthworm, mycorrhizal fungi, diazotroph bacteria) can be performed in order to improve soil properties and promote nutrients recycling. However, questions arise concerning the dynamics of the contaminants in an inoculated soil.The aim of this study was to highlight the soil-plant-earthworm interactions in the case of a slightly contaminated soil. For this purpose, a pot experiment in controlled conditions was carried out during 2 months with a Cd, Zn, and Cu contaminated sandy soil, including conditions with or without earthworms (Aporrectodea caliginosa) and with or without plants (Lolium perenne).The three components of the trace element bioavailability were studied to understand the belowground-aboveground relationships and were quantified as followed: i) environmental availability in soils by measuring trace element concentrations in soil solution, ii) environmental bioavailability for organisms by measuring trace element concentrations in depurated whole earthworms bodies and in the plant aerial biomass, and iii) toxicological bioavailability, by measuring survival rate and body weight changes for earthworms and biomass for plants. The results showed that earthworm inoculation increased the content of all studied TE in soil solution. Moreover, lower concentrations of Cd and Zn were found in plants in the presence of earthworms while the bioavailability decreased when compared to the condition without plants. The trace element bioaccumulation in earthworms did not produce a direct toxicity, according to the earthworm survival rate and body weight results.Finally, our pot experiment confirmed that even in contaminated soils, the presence of A. caliginosa promotes plant adaptation and improves biomass production, reducing trace element uptake.
Afficher plus [+] Moins [-]The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships Texte intégral
2021
Hullot, Olivier | Lamy, Isabelle | Tiziani, Raphael | Mimmo, Tanja | Ciadamidaro, Lisa
Contaminated soils are lands in Europe deemed less favourable for conventional agriculture. To overcome the problem of their poor fertility, bio-fertilization could be a promising approach. Soil inoculation with a choice of biological species (e.g. earthworm, mycorrhizal fungi, diazotroph bacteria) can be performed in order to improve soil properties and promote nutrients recycling. However, questions arise concerning the dynamics of the contaminants in an inoculated soil. The aim of this study was to highlight the soil-plant-earthworm interactions in the case of a slightly contaminated soil. For this purpose, a pot experiment in controlled conditions was carried out during 2 months with a Cd, Zn, and Cu contaminated sandy soil, including conditions with or without earthworms (Aporrectodea caliginosa) and with or without plants (Lolium perenne). The three components of the trace element bioavailability were studied to understand the belowground-aboveground relationships and were quantified as followed: i) environmental availability in soils by measuring trace element concentrations in soil solution, ii) environmental bioavailability for organisms by measuring trace element concentrations in depurated whole earthworms bodies and in the plant aerial biomass, and iii) toxicological bioavailability, by measuring survival rate and body weight changes for earthworms and biomass for plants. The results showed that earthworm inoculation increased the content of all studied TE in soil solution. Moreover, lower concentrations of Cd and Zn were found in plants in the presence of earthworms while the bioavailability decreased when compared to the condition without plants. The trace element bioaccumulation in earthworms did not produce a direct toxicity, according to the earthworm survival rate and body weight results. Finally, our pot experiment confirmed that even in contaminated soils, the presence of A. caliginosa promotes plant adaptation and improves biomass production, reducing trace element uptake.
Afficher plus [+] Moins [-]The effect of earthworms on plant response in metal contaminated soil focusing on belowground-aboveground relationships Texte intégral
2021
Hullot, Olivier | Lamy, Isabelle | Tiziani, Raphael | Mimmo, Tanja | Ciadamidaro, Lisa | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Free University of Bozen-Bolzano | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | MAGIC project - European Union's Horizon 2020 research and innovation program
International audience | Contaminated soils are lands in Europe deemed less favourable for conventional agriculture. To overcome the problem of their poor fertility, bio-fertilization could be a promising approach. Soil inoculation with a choice of biological species (e.g. earthworm, mycorrhizal fungi, diazotroph bacteria) can be performed in order to improve soil properties and promote nutrients recycling. However, questions arise concerning the dynamics of the contaminants in an inoculated soil. The aim of this study was to highlight the soil-plant-earthworm interactions in the case of a slightly contaminated soil. For this purpose, a pot experiment in controlled conditions was carried out during 2 months with a Cd, Zn, and Cu contaminated sandy soil, including conditions with or without earthworms (Aporrectodea caliginosa) and with or without plants (Lolium perenne). The three components of the trace element bioavailability were studied to understand the belowground-aboveground relationships and were quantified as followed: i) environmental availability in soils by measuring trace element concentrations in soil solution, ii) environmental bioavailability for organisms by measuring trace element concentrations in depurated whole earthworms bodies and in the plant aerial biomass, and iii) toxicological bioavailability, by measuring survival rate and body weight changes for earthworms and biomass for plants. The results showed that earthworm inoculation increased the content of all studied TE in soil solution. Moreover, lower concentrations of Cd and Zn were found in plants in the presence of earthworms while the bioavailability decreased when compared to the condition without plants. The trace element bioaccumulation in earthworms did not produce a direct toxicity, according to the earthworm survival rate and body weight results. Finally, our pot experiment confirmed that even in contaminated soils, the presence of A. caliginosa promotes plant adaptation and improves biomass production, reducing trace element uptake.
Afficher plus [+] Moins [-]Thiol-functionalized nano-silica for in-situ remediation of Pb, Cd, Cu contaminated soils and improving soil environment Texte intégral
2021
Lian, Mingming | Wang, Longfei | Feng, Qiaoqiao | Niu, Liyong | Zhao, Zongsheng | Wang, Pengtao | Song, Chunpeng | Li, Xiaohong | Zhang, Zhijun
Heavy metal contamination has been threatening the health of human beings. To decrease the bio-toxicity of heavy metals, a thiol-functionalized nano-silica (SiO₂-SH) was adopted to remediate the soil contaminated by lead (Pb), cadmium (Cd) and copper (Cu). The remediation effect of SiO₂-SH on contaminated soils was investigated by the uptake of the heavy metals into lettuce and pakchoi in pot experiment. The bio-toxicity of the SiO₂-SH was evaluated, and its immobilization mechanisms were proposed by the fraction distribution of Cd, Pb and Cu. It was found that the SiO₂-SH can significantly reduce the uptake of Cd, Pb, Cu into pakchoi by 92.02%, 68.03%, 76.34% and into lettuce by 89.81%, 43.41%, 5.76%, respectively. The chemical species analyses of Cd, Pb, Cu indicate SiO₂-SH can transform the heavy metal in acid soluble states into reducible fraction and oxidizable fraction, thereby inhibiting the extraction of heavy metals into soil solution. The concentrations of microbial biomass carbon, organic matter, and cation exchange capacity of the soil increased while the soil bulk density decreased after remediation. Those changes demonstrate that SiO₂-SH not only has no bio-toxic impact on the soil environment but also improves the soil environment, which proves the prepared SiO₂-SH is environmental-friendly. The SiO₂-SH could be a promising amendment for heavy metal contaminated soils.
Afficher plus [+] Moins [-]Increasing phosphate inhibits cadmium uptake in plants and promotes synthesis of amino acids in grains of rice Texte intégral
2020
Zhao, Yanling | Zhang, Changbo | Wang, Changrong | Huang, Yongchun | Liu, Zhongqi
Technologies for cleaner production of rice in cadmium (Cd) contaminated field are being explored worldwide. In order to investigate the inhibition mechanism of phosphate on Cd transport in soil-plant system, controlled experiments were performed in this study. Experimental results showed that Cd levels in roots, flag leaves, rachises and grains of rice plants (Oryza sativa L.) were significantly reduced by supplement of 0.5–2.5 g kg⁻¹ calcium magnesium phosphate fertilizer (CMP). Path coefficient analysis revealed that phosphorous had significant negative direct effect on Cd, but positive indirect effect on essential and non-essential amino acids. Applying 2.5 g kg⁻¹ CMP made the Cd concentration decreased by 45.7% while free essential and non-essential amino acids increased by 28.0–28.6% in grains. Levels of the branched-chain amino acids in grains were much higher than other essential amino acids, and increased with the amount of CMP fertilization. After application of CMP, pH of soil solution and thickness of the iron plaque around roots increased significantly. Spectra from X-ray photoelectron spectrometer (XPS) showed that content of N, P and Fe increased apparently, C, O and Ca had no change, while S decreased by 74.2% in roots after application of 2.5 g kg⁻¹ CMP. Meanwhile, Cd concentration in protoplasts of root cells decreased by 39.5–80.1% with the increase of CMP. These results indicate that application of CMP can effectively inhibit Cd accumulation in root protoplasts by promoting iron plaque formation on the root surface, reduce Cd concentration and increase free amino acids in rice grains.
Afficher plus [+] Moins [-]Nitrogen induced DOC and heavy metals leaching: Effects of nitrogen forms, deposition loads and liming Texte intégral
2020
Zia, Afia | van den Berg, Leon | Riaz, Muhammad | Arif, Muhammad | Zia, Dania | Khan, Shawana J. | Ahmad, Muhammad Nauman | Attaullah, | Ahsmore, Mike
Atmospheric nitrogen (N) deposition is believed to accelerate dissolved organic carbon (DOC) production and could lead to increased heavy metal mobility into water resources. We sampled intact soil cores from the Isle of Skye with low background N deposition history and having Serpentine rock known for its higher heavy metal concentrations including zinc (Zn), copper (Cu), nickel (Ni) and lead (Pb). The effects of 16 (16kgN) and 32 kg N ha⁻¹ year⁻¹ (32kgN), and liming with 32kgN (32kgN+Lime) on soil solution chemistry and heavy metal mobilization were investigated over the 15-month study. Nitrogen in deposition load was added at five ammonium (NH₄⁺) to nitrate (NO₃⁻) ratios of 9:1, 5:1, 1:1, 1:5 and 1:9 along NO₃⁻dominance. We found significant effects of load on Cu and NH₄⁺/NO₃⁻ ratio on pH, DOC and Zn in soil solution. However, under lime and ratio experimental factors, liming significantly influenced pH, DOC, Cu and Pb, and NH₄⁺/NO₃⁻ ratio pH, DOC, Ni and Zn whereas interactions between lime and ratio was significant for Ni and Cu. pH and DOC increased with N load, liming and NO₃⁻ dominance, and both correlated significantly positively. Liming under NH₄⁺ dominance enhanced DOC production due to supply of base cations in lime. Mobilization of Cu, Ni and Pb was driven by DOC concentrations and, therefore, increased with load, liming and NO₃⁻ dominance in deposition. However, in contrast, low pH and high NH₄⁺ dominance was associated with Zn mobilization in soil solution. On the contrary, despite of some patterns, heavy metals in soil HNO₃ extracts were devoid of any load, lime and NH₄⁺/NO₃⁻ ratio effects. Our study suggests that the effects of N load and forms in deposition on sites with high accumulated loads of metals need to be better quantified through soil solution partitioning models.
Afficher plus [+] Moins [-]Desorption kinetics of tetracyclines in soils assessed by diffusive gradients in thin films Texte intégral
2020
Ren, Suyu | Wang, Yi | Cui, Ying | Wang, Yan | Wang, Xiaochun | Chen, Jingwen | Tan, Feng
Tetracyclines (TCs) are frequently detected in agricultural soils worldwide, causing a potential threat to crops and human health. In this study, diffusive gradients in thin films technique (DGT) was used to measure the distribution and exchange rates of three TCs (tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC)) between the solid phase and solution in five farmland soils. The relationship between the accumulated masses with time suggested that TCs consumption in soil solution by DGT would induce the supply from the soil solid phase. The distribution coefficient for the labile antibiotics (Kdl), response time (Tc) and desorption/adsorption rates (kb and kf) between dissolved and sorbed TCs were derived from the dynamic model of DIFS (DGT induced fluxes in soils). The Kdl showed similar sizes of labile solid phase pools for TC and OTC while larger pool sizes were observed for CTC in the soils. Although the concentrations of CTC were lowest in soil solution, the potential hazard caused by continuous release from soil particles could not be ignored. The long response time (>30 min in most cases) suggested that the resupply of TCs from soil solids was limited by their desorption rates (1.26-121 × 10−6 s−1). The soils in finer texture, with higher clay and silt contents (<50 μm) showed a greater potential for TCs release.
Afficher plus [+] Moins [-]Association between extracted copper and dissolved organic matter in dairy-manure amended soils Texte intégral
2019
Araújo, Eloá | Strawn, Daniel G. | Morra, M. J. (Matthew John) | Moore, Amber | Ferracciú Alleoni, Luis Reynaldo
Dairy manure often has elevated concentrations of copper (Cu) that when applied to soil may create toxicity risks to seedlings and soil microbes. Manure application also increases dissolved organic matter (DOM) in soil solution. We hypothesize that high rates of dairy manure amendment over several years will cause increased DOM in the soil that complexes Cu, increasing its mobility. To test this hypothesis, this study investigated water soluble Cu concentrations and dissolved organic carbon (DOC) in soil samples from 3 years of manure-amended soils. Samples were collected at two depths over the first 3 years of a long-term manure-amendment field trial. DOC, Cu, Fe, and P concentrations were measured in water extracts from the samples. Ultraviolet/visible (UV/Vis) spectra were used to assess the DOC characteristics. After 3 years of manure application, extractable Cu concentration was approximately four times greater in the surface and two times greater in subsurface samples of manure-amended soils as compared to non-amended control soils and traditional mineral fertilizer-amended soils. The extractable Cu concentration was greatest in plots that had the highest manure amendment rates (35 t ha⁻¹ and 52 t ha⁻¹, dry weight). The UV/Vis parameters SUVA₂₅₄ and E₂/E₃ correlated with Cu concentration in the extracts (p < 0.05), suggesting that DOC characteristics are important in Cu-binding. The molecular characteristics of the DOC in the subsurface after 3 years of manure amendment were distinct from the DOC in the control plot, suggesting that manure amendment creates mobile DOC that may facilitate Cu mobilization through soil. The 10-fold increase in extractable Cu concentration after only 3 years of manure application indicates that repeated applications of the dairy manure sources used in this study at rates of 35 t/ha or greater may create risks for Cu toxicity and leaching of Cu into ground and surface waters.
Afficher plus [+] Moins [-]The release and earthworm bioaccumulation of endogenous hexabromocyclododecanes (HBCDDs) from expanded polystyrene foam microparticles Texte intégral
2019
Li, Bing | Lan, Zhonghui | Wang, Lei | Sun, Hongwen | Yao, Yiming | Zhang, Kai | Zhu, Lusheng
Hexabromocyclododecanes (HBCDDs) are common chemical additives in expanded polystyrene foam (EPS). To evaluate the bioaccumulation potential of endogenous HBCDDs in EPS microparticles by earthworms, two ecologically different species of earthworms (Eisenia fetida and Metaphire guillelmi) were exposed to soil added with EPS microparticles of different particle sizes (EPS2000, 830–2000 μm and EPS830, <830 μm). To clarify the accumulation mechanisms, leaching experiments using EPS microparticles in different solutions were conducted. After exposure to EPS microparticles-amended soils (S-EPS) for 28 d, the total concentrations of HBCDDs reached 307–371 ng g−1 dw in E. fetida and 90–133 ng g−1 dw in M. guillelmi, which were higher than those in earthworms exposed to the soil that was artificially contaminated with a similar level of HBCDDs directly (ACS). The accumulation of HBCDDs in earthworms was significantly influenced by EPS microparticles' size and earthworms' species. The total concentrations of HBCDDs in earthworms' cast were significantly higher than the theoretical concentration of HBCDDs in S-EPS, which suggested that EPS microparticles can be ingested by earthworms. The release rate of HBCDDs from EPS5000 (2000–5000 μm) into water-based solutions (<1%) after a 3.5-h incubation was far lower than that into earthworm digestive fluid (7%). These results illustrated that the ingestion of EPS microparticles and consequent solubilization of HBCDDs by digestive fluid play an important role in the accumulation of HBCDDs contained in EPS microparticles in earthworms. After a 28-d incubation with the soil solution, 4.9% of the HBCDDs was accumulatively leached from the EPS5000, which indicated that HBCDDs can be released from EPS microparticles to soil environment, and then accumulated by earthworms. Moreover, similar to those exposed to ACS, the diastereoisomer- and enantiomer-specific accumulation of HBCDDs in earthworms occurred when exposed to S-EPS. This study provides more evidence for the risk of microplastics to the soil ecosystem.
Afficher plus [+] Moins [-]Impact of long-term nitrogen deposition on the response of dune grassland ecosystems to elevated summer ozone Texte intégral
2019
Hayes, Felicity | Lloyd, Bethan | Mills, Gina | Jones, Laurence | Dore, Anthony J. | Carnell, Edward | Vieno, Massimo | Dise, Nancy | Fenner, Nathalie
Nitrogen deposition and tropospheric ozone are important drivers of vegetation damage, but their interactive effects are poorly understood. This study assessed whether long-term nitrogen deposition altered sensitivity to ozone in a semi-natural vegetation community. Mesocosms were collected from sand dune grassland in the UK along a nitrogen gradient (5–25 kg N/ha/y, including two plots from a long-term experiment), and fumigated for 2.5 months to simulate medium and high ozone exposure. Ozone damage to leaves was quantified for 20 ozone-sensitive species. Soil solution dissolved organic carbon (DOC) and soil extracellular enzymes were measured to investigate secondary effects on soil processes.Mesocosms from sites receiving the highest N deposition showed the least ozone-related leaf damage, while those from the least N-polluted sites were the most damaged by ozone. This was due to differences in community-level sensitivity, rather than species-level impacts. The N-polluted sites contained fewer ozone-sensitive forbs and sedges, and a higher proportion of comparatively ozone-resistant grasses. This difference in the vegetation composition of mesocosms in relation to N deposition conveyed differential resilience to ozone.Mesocosms in the highest ozone treatment showed elevated soil solution DOC with increasing site N deposition. This suggests that, despite showing relatively little leaf damage, the ‘ozone resilient’ vegetation community may still sustain physiological damage through reduced capacity to assimilate photosynthate, with its subsequent loss as DOC through the roots into the soil.We conclude that for dune grassland habitats, the regions of highest risk to ozone exposure are those that have received the lowest level of long-term nitrogen deposition. This highlights the importance of considering community- and ecosystem-scale impacts of pollutants in addition to impacts on individual species. It also underscores the need for protection of ‘clean’ habitats from air pollution and other environmental stressors.
Afficher plus [+] Moins [-]