Affiner votre recherche
Résultats 1-10 de 63
Soil N2O emission in Cinnamomum camphora plantations along an urbanization gradient altered by changes in litter input and microbial community composition Texte intégral
2022
Xu, Xintong | He, Chang | Zhong, Chuan | Zhang, Qiang | Yuan, Xi | Hu, Xiaofei | Deng, Wenping | Wang, Jiawei | Du, Qu | Zhang, Ling
Urbanization alters land use, increasing the rate of greenhouse gas (GHG) emissions and hence atmospheric compositions. Nitrous oxide (N₂O) is a major GHG that contributes substantially to global warming. N₂O emissions are sensitive to changes in substrate availabilities, such as litter and N input, as well as micro-environmental factors caused by land-use change upon urbanization. However, the potential impacts of changing litter and N on soil N₂O emissions along urban-rural gradients is not well understood. Here, we conducted an in situ study over 19 months in Cinnamomum camphora plantations along an urban-rural gradient, to examine the effects of the urban-rural gradient, N and litter input on N₂O emissions from C. camphora plantation soils and the underlying mechanisms via N, litter and microbial communities. The results showed that urban soil N₂O emissions were 105% and 196% higher than those from suburban and rural soil, respectively, and co-occurred with a higher abundance of AOA, nirS and nirK genes. Litter removal increased cumulative N₂O emissions by 59.7%, 50.9% and 43.3% from urban, suburban and rural soils, respectively. Compared with litter kept treatment, increases in AOA and nirK abundance were observed in urban soil, and higher rural nirS abundance occurred following litter removal. Additionally, the relatively higher soil temperature and available N content in the urban soil increased N₂O emissions compared with the suburban and rural soil. Therefore, in addition to changes in microbial communities and abiotic environmental factors, litter kept in C. camphora plantations along an urban-rural gradient is also important in mitigating N₂O emissions, providing a potential strategy for the mitigation of N₂O emissions.
Afficher plus [+] Moins [-]Tree manipulation experiment for the short-term effect of tree cutting on N2O emission: A evaluation using Bayesian hierarchical modeling Texte intégral
2021
Nishina, Kazuya | Takenaka, Chisato | Ishizuka, Shigehiro | Hashimoto, Shōji
Considerable uncertainty exists with regard to the effects of thinning and harvesting on N₂O emissions as a result of changes caused in the belowground environment by tree cutting. To evaluate on the effects of changes in the belowground environment on N₂O emissions from soils, we conducted a tree manipulation experiment in a Japanese cedar (Cryptomeria japonica) stand without soil compaction or slash falling near measurement chambers and measured N₂O emission at distances of 50 and 150 cm from the tree stem (stump) before and after cutting. In addition, we inferred the effects of logging on the emission using a hierarchical Bayesian (HB) model. Our results showed that tree cutting stimulated N₂O emission from soil and that the increase in N₂O emission depended on the distance from the stem (stump); increase in N₂O emission was greater at 50 than at 150 cm from the stem. Tree cutting caused the estimated N₂O emission at 0–40 cm from the stem to double (the % increase in N₂O emission by tree cutting was 54%–213%, 95% predictive credible interval) when soil temperature was 25 °C and WFPS was 60%. Posterior simulation of the HB model predicted that 30% logging would cause a 57% (47%–67%) increase in N₂O emission at our study site (2000 trees ha⁻¹) considering only the effects of belowground changes by tree cutting during the measurement period.
Afficher plus [+] Moins [-]Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material Texte intégral
2017
Zhu, Fang | Li, Luwei | Ren, Wentao | Deng, Xiaoqiang | Liu, Tao
Nano zero valent iron/Ni bimetal materials (nZVI/Ni) were prepared by borohydride reduction method to remediate toxic Cr(Ⅵ) contaminated in soil leachate. nZVI/Ni was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Different factors including pH value of soil leachate, reaction time, temperature, humic acid and coexisting anions (SO42-, NO3−, HCO3−, CO32-) were studied to analyze the reduction rate. Results showed that the reduction rate of Cr(Ⅵ) could reach 99.84% under the condition of pH of 5 and temperature of 303 K. pH values and temperature of soil leachate had a significant effect on the reduction efficiency, while humic acid had inhibition effect for the reduction reaction. SO42-, HCO3− and CO32- had inhibition effect for reduction rate, while NO3− barely influenced the reduction process of nZVI/Ni. Moreover, Langumir-Hinshelwood first order kinetic model was studied and could describe the reduction process well. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Activation energy was 143.80 kJ mol−1, showing that the reaction occurred easily. Therefore, the study provides an idea for nZVI/Ni further research and practical application of nZVI/Ni in soil remediation.
Afficher plus [+] Moins [-]Inorganic nitrogen wet deposition: Evidence from the North-South Transect of Eastern China Texte intégral
2015
Zhan, X. | Yu, G. | He, N. | Jia, B. | Zhou, M. | Wang, C. | Zhang, J. | Zhao, G. | Wang, S. | Liu, Y. | Yan, J.
We examined the spatio-temporal variation of dissolved inorganic nitrogen (DIN) deposition in eight typical forest ecosystems of Eastern China for three consecutive years. DIN deposition exhibited an increasing gradient from north to south, with N−NH4+ as the predominant contributor. DIN deposition in precipitation changed after interaction with the forest canopy, and serious ecological perturbations are expected in this region. DIN deposition presented seasonal fluctuations, which might be ascribed to agricultural activity, fossil-fuel combustion and environmental factors (i.e., wind direction, soil temperature). Notably, N fertilizer use (FN), energy consumption (E), and precipitation (P) jointly explained 84.3% of the spatial variation in DIN deposition, of which FN (27.2%) was the most important, followed by E (24.8%), and finally P (9.3%). The findings demonstrate that DIN deposition is regulated by precipitation mainly via anthropogenic N emissions, and this analysis provides decision-makers a novel view for N pollution abatement.
Afficher plus [+] Moins [-]Quantifying the effects of soil temperature, moisture and sterilization on elemental mercury formation in boreal soils Texte intégral
2014
Pannu, Ravinder | Siciliano, Steven D. | O'Driscoll, Nelson J.
Soils are a source of elemental mercury (Hg(0)) to the atmosphere, however the effects of soil temperature and moisture on Hg(0) formation is not well defined. This research quantifies the effect of varying soil temperature (278–303 K), moisture (15–80% water filled pore space (WFPS)) and sterilization on the kinetics of Hg(0) formation in forested soils of Nova Scotia, Canada. Both, the logarithm of cumulative mass of Hg(0) formed in soils and the reduction rate constants (k values) increased with temperature and moisture respectively. Sterilizing soils significantly (p < 0.05, n = 10) decreased the percent of total Hg reduced to Hg(0). We describe the fundamentals of Hg(0) formation in soils and our results highlight two key processes: (i) a fast abiotic process that peaks at 45% WFPS and depletes a small pool of Hg(0) and; (ii) a slower, rate limiting biotic process that generates a large pool of reducible Hg(II).
Afficher plus [+] Moins [-]Water, heat, and airborne pollutants effects on transpiration of urban trees Texte intégral
2011
Wang, Hua | Ouyang, Z. (Zhiyun) | Chen, Weiping | Wang, Xiaoke | Zheng, Hua | Ren, Yufen
Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered.
Afficher plus [+] Moins [-]Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation Texte intégral
2009
Choi, Hyun-Deok | Holsen, Thomas M.
Mercury (Hg) emissions from the soils taken from two different sites (deciduous and coniferous forests) in the Adirondacks were measured in outdoor and laboratory experiments. Some of the soil samples were irradiated to eliminate biological activity. The result from the outdoor measurements with different soils suggests the Hg emission from the soils is partly limited by fallen leaves covering the soils which helps maintain relatively high soil moisture and limits the amount of heat and solar radiation reaching the soil surface. In laboratory experiments exposure to UV-A (365 nm) had no significant effect on the Hg emissions while the Hg emissions increased dramatically during exposure to UV-B (302 nm) light suggesting UV-B directly reduced soil-associated Hg. Overall these results indicate that for these soils biotic processes have a relatively constant and smaller influence on the Hg emission from the soil than the more variable abiotic processes. Hg emission measurements from soils indicate that abiotic processes were more important than biotic processes in reducing Hg and controlling emissions.
Afficher plus [+] Moins [-]Temporal variations of soil NO and NO2 fluxes in two typical subtropical forests receiving contrasting rates of N deposition Texte intégral
2022
Ke, Piaopiao | Kang, Ronghua | Avery, Loreena K. | Zhang, Jiawei | Yu, Qian | Xie, Danni | Duan, Lei
Soils have been widely acknowledged as important natural sources of nitric oxide (NO) and meanwhile sinks of nitric dioxide (NO₂). High nitrogen deposition across South China could potentially result in large NO emissions from subtropical forests soils there. In this study, the dynamic chamber method was applied to monitor NO and NO₂ fluxes at two subtropical forest sites in South China, namely “Qianyanzhou” (QYZ) and “Tieshanping” (TSP). Chronically higher N deposition occurred at TSP than that at QYZ. Besides soil water filled pore spaces (WFPS) and temperature, ambient NO concentration could also possibly be important in regulating temporal NO emissions, especially in the winter. For both sites, the optimum soil temperature was above 25 °C, while the optimum WFPS for NO release at QYZ was higher (65–70%) than that at TSP (<23%). Moreover, heavy rainfall could trigger NO emission pulses from moist soils at QYZ, while rainfall-induced NO pulses were only observed after a long drying period at TSP. Distinctly different contents of mineral nitrogen and soil moisture conditions between the two sites might induce the divergent preference of WFPS and responses to rainfall. The cumulative soil emission of NO reached 0.41 ± 0.01 and 0.76 ± 0.01 kg N ha⁻¹ yr⁻¹ at QYZ and TSP, contributing to 2.5% and 1.4% of the annual throughfall N input, respectively. At both sites, NO₂ were mainly deposited to soils, accounting for 2% and 21% of soil-emitted NO at QYZ and TSP, respectively. The observed annual NO emissions at these two sites were larger than the median values observed for tropical and temperate forests and unfertilized croplands. Higher N deposition could induce larger NO emission potential, while soil temperature and pH might also be important in regulating regional soil NO emissions as N-loss from subtropical forests.
Afficher plus [+] Moins [-]Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China Texte intégral
2018
Xie, Danni | Si, Gaoyue | Zhang, Ting | Mulder, Jan | Duan, Lei
Nitrous oxide (N₂O) is a major greenhouse gas, with elevated emission being reported from subtropical forests that receive high nitrogen (N) deposition. After 10 years of monthly addition of ammonium nitrate (NH₄NO₃) or sodium nitrate (NaNO₃) to a Mason pine forest at Tieshanping, near Chongqing city in Southwest China, the simulated N deposition was stopped in October 2014. The results of soil N₂O emissions monitoring in different seasons during the nitrogen application period showed that nitrogen addition significantly increased soil N₂O emission. In general, the N₂O emission fluxes were positively correlated to nitrate (NO₃⁻) concentrations in soil solution, supporting the important role of denitrification in N₂O production, which was also modified by environmental factors such as soil temperature and moisture. After stopping the application of nitrogen, the soil N₂O emissions from the treatment plots were no longer significantly higher than those from the reference plots, implying that a decrease in nitrogen deposition in the future would cause a decrease in N₂O emission. Although the major forms of N deposition, NH₄⁺ and NO₃⁻, had not shown significantly different effects on soil N₂O emission, the reduction in NH₄⁺ deposition may decrease the NO₃⁻ concentrations in soil solution faster than the reduction in NO₃⁻ deposition, and thus be more effective in reducing N₂O emission from N-saturated forest soil in the future.
Afficher plus [+] Moins [-]Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures Texte intégral
2013
Rhind, S.M. | Kyle, C.E. | Ruffie, H. | Calmettes, E. | Osprey, M. | Zhang, Z.L. | Hamilton, D. | McKenzie, C.
Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured.
Afficher plus [+] Moins [-]