Affiner votre recherche
Résultats 1-10 de 314
Effect of salinity on the fate of pesticides in irrigated systems: a first overview Texte intégral
2023
Khouni, Mariem | Hammecker, Claude | Grünberger, Olivier | Chaabane, Hanène | Institut National Agronomique de Tunisie (INAT) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | PROJET PRIMA ALTOS
International audience | This review investigates the impact of salinity on the fate of the active compounds of pesticides in a cultivated environment. Due to the over-exploitation of water resources and intensification of agriculture, salinity outbreaks are being observed more often in cultivated fields under pesticide treatments. Nevertheless, there is a poor understanding of the incidence of varying water salt loads on the behavior of pesticides’ active ingredients in soil and water bodies. The present review established that water salinity can affect the diffusion of pesticides’ active ingredients through numerous processes. Firstly, by increasing the vapor pressure and decreasing the solubility of the compounds, which is known as the salting-out effect, salinity can change the colligative properties of water towards molecules and the modification of exchange capacity and sorption onto the chemicals. It has also been established that the osmotic stress induced by salinity could inhibit the biodegradation process by reducing the activity of sensitive microorganisms. Moreover, soil properties like dissolved organic matter, organic carbon,clay content, and soil texture control the fate and availability of chemicals in different processes of persistence in water and soil matrix. In the same line, salinity promotes the formation of different complexes, such as between humic acid and the studied active compounds. Furthermore, salinity can modify the water flux due to soil clogging because of the coagulation and dispersion of clay particle cycles, especially when the change in salinity ranges is severe.
Afficher plus [+] Moins [-]Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination Texte intégral
2022
Ding, Song | Guan, Dong-Xing | Dai, Zhi-Hua | Su, Jing | Teng, H Henry | Ji, Junfeng | Liu, Yizhang | Yang, Zhongfang | Ma, Lena Q.
Abnormally high concentrations of metals including nickel (Ni) in soils result from high geochemical background (HB) or anthropogenic contamination (AC). Metal bioaccessibility in AC-soils has been extensively explored, but studies in HB-soils are limited. This study examined the Ni bioaccessibility in basalt and black shale derived HB-soils, with AC-soils and soils without contamination (CT) being used for comparison. Although HB- and AC-soils had similar Ni levels (123 ± 43.0 vs 155 ± 84.7 mg kg⁻¹), their Ni bioaccessibility based on the gastric phase of the Solubility Bioaccessibility Research Consortium (SBRC) in vitro assay was different. Nickel bioaccessibility in HB-soils was 6.42 ± 3.78%, 2-times lower than the CT-soils (12.0 ± 9.71%) and 6-times lower than that in AC-soils (42.6 ± 16.3%). Based on the sequential extraction, a much higher residual Ni fractionation in HB-soils than that in CT- and AC-soils was observed (81.9 ± 9.52% vs 68.6 ± 9.46% and 38.7 ± 16.0%). Further, correlation analysis indicate that the available Ni (exchangeable + carbonate-bound + Fe/Mn hydroxide-bound) was highly correlated with Ni bioaccessibility, which was also related to the organic carbon content in soils. The difference in co-localization between Ni and other elements (Fe, Mn and Ca) from high-resolution NanoSIMS analysis provided additional explanation for Ni bioaccessibility. In short, based on the large difference in Ni bioaccessibility in geochemical background and anthropogenic contaminated soils, it is important to base contamination sources for proper risk assessment of Ni-contaminated soils.
Afficher plus [+] Moins [-]The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms Texte intégral
2022
Santos, Joana | Barreto, Angela | Sousa, Érika M.L. | Calisto, Vânia | Amorim, Mónica J.B. | Maria, Vera L.
Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects – no interaction, synergism and antagonism – between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.
Afficher plus [+] Moins [-]Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging Texte intégral
2022
Peng, Jinlong | Fu, Fenglian | Ye, Chujia | Tang, Bing
Selenium (Se) is regarded as a trace element for humans, but it is toxic in excess. In natural environments, the mobility of Se is dominantly controlled by the Se oxyanions with high solubility such as selenite (Se(IV)). Se(IV) is often associated with the omnipresent ferrihydrite and coexisting organic matter. However, there is little information on the dynamic interactions among Se(IV), fulvic acid, and ferrihydrite. This study investigated the influence of fulvic acid on ferrihydrite-Se(IV) coprecipitates (Fh-Se) transformation for 8 days and the subsequent behavior of Se(IV) at varied pH (5.0, 7.5, and 10.0). Results showed that fulvic acid had different effects on Fh-Se transformation at varied pH values. Fh-Se transformation was promoted by fulvic acid at initial pH 5.0 whereas it was inhibited at initial pH 10.0. Interestingly, at initial pH 7.5, Fh-Se transformation was promoted at a low C/Fe ratio while it was suppressed at a high C/Fe ratio. Besides, fulvic acid induced the generation of more extractable Se(IV) at initial pH 5.0 and more coprecipitated Se(IV) at initial pH 7.5 and blocked the release of Se(IV) at initial pH 10.0. Fulvic acid possibly interacted with Se(IV) via carboxyl complexation and weakened the inhibition of Se(IV) on Fh-Se transformation. Thus, fulvic acid increased the transformation rate of Fh-Se. These findings help to uncover the environmental behavior of Se(IV) and organic matter during ferrihydrite transformation.
Afficher plus [+] Moins [-]Effects of sulfur application on cadmium accumulation in brown rice under wheat-rice rotation Texte intégral
2021
Huang, Lijuan | Hansen, Hans Chr Bruun | Yang, Xiaosong | Mu, Jing | Xie, Zijian | Li, Songyan | Wu, Guangmei | Hu, Zhengyi
We investigated how sulfur (S) application prior to wheat cultivation under wheat-rice rotation influences the uptake of cadmium (Cd) in rice grown in low- and high-Cd soils. A pot experiment was conducted with four S levels (0, 30, 60, 120 mg S kg⁻¹) and two Cd rates (low and high, 0.35 and 10.35 mg Cd kg⁻¹) supplied to wheat. Part of the wheat straw was returned to the soil before planting rice, which was cultivated for 132 days. To explore the key mechanisms by which S application controlled Cd accumulation in brown rice, (1) soil pore water at the key growth stages was sampled, and dissolved Cd and S species concentrations were determined; (2) rice plant tissues (including iron plaque on the root surface) were sampled at maturity for Cd and S analysis. With increasing S level, Cd accumulation in brown rice peaked at 60 mg S kg⁻¹, irrespective of soil Cd levels. For high-Cd soils, concentrations of Cd in brown rice increased by 57%, 228%, and 100% at 30, 60, and 120 mg S kg⁻¹, respectively, compared with no S treatment. The increase in brown rice Cd by low S levels (0–60 mg kg⁻¹) could be attributed to (1) the S-induced increase in soil pore water sulfate increasing the Cd influx into rice roots and (2) the S-induced increase in leaf S promoting Cd translocation into brown rice. However, brown rice Cd decreased at 120 mg S kg⁻¹ due to (1) low Cd solubility at 120 mg S kg⁻¹ and (2) root and leaf S uptake, which inhibited Cd uptake. Sulfur application to wheat crop increased the risk of Cd accumulation in brown rice. Thus, applying S-containing fertilizers to Cd-contaminated paddy soils is not recommended.
Afficher plus [+] Moins [-]Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production Texte intégral
2021
Zhang, Wangshou | Li, Hengpeng | Pueppke, Steven G. | Pang, Jiaping
Wetlands can improve water quality, but they are also recognized as important sources of greenhouse gases (GHG) such as nitrous oxide (N₂O) and methane (CH₄). Emissions of these gases from wetland ecosystems, especially those in headwaters, are poorly understood. Here, we determined monthly concentrations of dissolved N₂O and CH₄ in a headwater stream of the Taihu Lake basin of China that contains both wetland and non-wetland reaches. Daily GHG dynamics in the wetland reach were also investigated. Riverine N₂O and CH₄ concentrations generally varied within 10–30 nmol L⁻¹ and 0.1–1.5 μmol L⁻¹, respectively. CH₄ saturation levels in the wetland reach were about seven times higher than those in the non-wetland reach, but there was no difference in N₂O saturation. In the wetland reach, saturation levels of CH₄ peaked in July, coincident with a dip in N₂O saturation to levels below its saturated solubility. This underscores that hotspots of CH₄ production and sinks for N₂O can occur occasionally in wetlands in mid-summer, when vegetative growth and microbial activities are high. Diurnal measurements indicated that CH₄ saturation in water flows passing through the wetlands from midnight through the early morning can surge to levels 10 times higher than those detected at other times of the day. Simultaneously, saturation levels of N₂O decreased by 75%, indicating a net consumption of N₂O. Changes in nutrient supply determined by upstream inflows, as well as dissolved oxygen, pH, and other environmental factors mediated by the wetlands, correlate with the differentiated behavior of N₂O and CH₄ production in wetlands. Additional work will be necessary to confirm the roles of these factors in regulating GHG emissions in riverine wetlands.
Afficher plus [+] Moins [-]Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming Texte intégral
2021
Yao, Aijun | Liu, Ying | Sitong, | Liu, Chong | Tang, Yetao | Wang, Shizhong | Huang, Xiongfei | Qiu, Rongliang
Liming is a safe and effective remediation practice for Cd contaminated acid paddy soil. The fate of Cd can also be strongly influenced by redox chemistry of sulfur. But it is unclear if, to what extent and how the combination of liming and sulfur mediation could further control Cd uptake by paddy rice. A rice cultivation pot experiment was conducted to evaluate the impact of different sulfur forms (S⁰ and SO₄²⁻ in K₂SO₄) on the solubility, uptake and accumulation of Cd in the soil-paddy rice system and how liming and reducing organic carbon mediate the process. Results showed that under neutral soil circumstances achieved by liming, co-application of K₂SO₄ and glucose significantly reduced brown rice Cd by 33%, compared to liming alone. They made it more readily for Cd²⁺ to be precipitated into CdS/CdS₂ or co-precipitate with newly formed FeS/FeS₂/iron oxides. The higher pH balancing capability of K₂SO₄ as well as liming kept the newly formed sulfide or iron containing minerals negatively charged to be more prone to adsorb Cd²⁺, that kept the porewater Cd²⁺ the lowest among all the treatments. Individual K₂SO₄ showed significant promoting effect on soil Cd solubility due to SO₄²⁻ chelation effect. Furthermore, K₂SO₄ had much weaker inhibiting effect on Cd translocation from root to grain, it showed no significant attenuating effect on brown rice Cd. S⁰ containing treatments displayed weaker or no attenuating effect on brown rice Cd due to its strong soil acidification effect. On the basis of liming, organic carbon induced sulfur (K₂SO₄) mediation showed great application potential for safe production on large areas of acid paddy soil contaminated by Cd.
Afficher plus [+] Moins [-]Rapid formation of pyrogenic char (biochar) with high and low sorption capacity towards organic chemicals Texte intégral
2021
Chen, Zaiming | Wang, Jianfei | Wang, Yuefeng | Li, Bing | Wang, Meizhen
Pyrogenic char (biochar) with a high sorption capacity (B-HSC) can sequester hazardous chemicals (e.g., phenanthrene). However, when sorption inhibits bioavailability of some functional chemicals (e.g., the herbicidal efficacy of diuron in soil), biochar with a low sorption capacity (B-LSC) is required to prevent sorption effects. The pyrolytic B-HSC generation has been reported, but information on B-LSC formation is scarce. How fast B-HSC and B-LSC could be generated is unknown until now. Here, biochars were rapidly prepared (the shortest heating time reached 5 min and the cooling time reached < 30 min) by a direct-pyrolysis method by directly exposing packaged rice straw and pine wood to 350 °C, 500 °C and 700 °C and out-of-furnace cooling at room temperature. The sorption of diuron, phenanthrene, and twelve other chemicals was investigated. B–HSCs were obtained within 30 min of rice straw pyrolysis, and the biochar Kd values quickly increased to 7-730-fold that of the raw biomass as –OH and C–O–C in (hemi)cellulose of rice straw rapidly degraded, increasing hydrophobic interactions between the char and chemicals (solubility ≤ 82.8 g/L). In contrast, B-LSCs were generated within 30 min of PW pyrolysis, and the Kd values of the biochars were 0.2–3.0-fold that of the raw biomass, as the surface area development and hydrophobicity-driven sorption were probably delayed by the late degradation of lignin aromatic C–O and phenolic –OH. Biochar amendment revealed an enhancement effect of B-HSC but not of B-LSC on soil sorption. The fast formation of B-LSC and B-HSC provides a guide to develop time- and cost-effective technique in pyrolytically producing weakly or strongly sorbing biochars for organic chemical management.
Afficher plus [+] Moins [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: The challenges of ecological risk assessments Texte intégral
2020
Hodson, P.V. | Wallace, S.J. | de Solla, S.R. | Head, S.J. | Hepditch, S.L.J. | Parrott, J.L. | Thomas, P.J. | Berthiaume, A. | Langlois, V.S.
Ecological risk assessments (ERAs) of polycyclic aromatic compounds (PACs), as single congeners or in mixtures, present technical challenges that raise concerns about their accuracy and validity for Canadian environments. Of more than 100,000 possible PAC structures, the toxicity of fewer than 1% have been tested as individual compounds, limiting the assessment of complex mixtures. Because of the diversity in modes of PAC action, the additivity of mixtures cannot be assumed, and mixture compositions change rapidly with weathering. In vertebrates, PACs are rapidly oxygenated by cytochrome P450 enzymes, often to metabolites that are more toxic than the parent compound. The ability to predict the ecological fate, distribution and effects of PACs is limited by toxicity data derived from tests of a few responses with a limited array of test species, under optimal laboratory conditions. Although several models are available to predict PAC toxicity and rank species sensitivity, they were developed with data biased by test methods, and the reported toxicities of many PACs exceed their solubility limits. As a result, Canadian Environmental Quality Guidelines for a few individual PACs provide little support for ERAs of complex mixtures in emissions and at contaminated sites. These issues are illustrated by reviews of three case studies of PAC-contaminated sites relevant to Canadian ecosystems. Interactions among ecosystem characteristics, the behaviour, fate and distribution of PACs, and non-chemical stresses on PAC-exposed species prevented clear associations between cause and effect. The uncertainties of ERAs can only be reduced by estimating the toxicity of a wider array of PACs to species typical of Canada’s diverse geography and environmental conditions. Improvements are needed to models that predict toxicity, and more field studies of contaminated sites in Canada are needed to understand the ecological effects of PAC mixtures.
Afficher plus [+] Moins [-]Formation and mobilization of methylmercury across natural and experimental sulfur deposition gradients Texte intégral
2020
Åkerblom, Staffan | Nilsson, Mats B. | Skyllberg, Ulf | Bjørn, Erik | Jonsson, Sofi | Ranneby, Bo | Bishop, Kevin
We investigated the influence of sulfate (SO₄²⁻) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that increased loading of SO₄²⁻ both increases net MeHg formation and redistributes methylmercury (MeHg) from the peat soil to its porewater. Sulfur concentrations in peat soils correlated positively with MeHg concentrations in peat porewater, along the deposition gradient similar to the response to added SO₄²⁻ in the experimental field study. The combined results from the experimental field study and deposition gradient accentuate the multiple, distinct and interacting roles of SO₄²⁻ deposition in the formation and redistribution of MeHg in the environment.
Afficher plus [+] Moins [-]