Affiner votre recherche
Résultats 1-10 de 76
Effect of pH, Initial Concentration, Background Electrolyte, and Ionic Strength on Cadmium Adsorption by TiO2 and γ-Al2O3 Nanoparticles
2020
Shirzadeh, M. | Sepehr, E. | Rasouli Sadaghiani, M. H. | Ahmadi, F.
The entrance of Cd (II) to aqueous environments causes a major problem to human health. The current article examines the efficiency of TiO2 and γ-Al2O3 nanoparticles in Cd (II) removal from aqueous medium as influenced by different chemical factors, such as pH, initial concentration, background electrolyte, and ionic strength, in accordance with standard experimental methods. It conducts Batch experiments, fitting various isotherm models (Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich) to the equilibrium data. Saturation indices (SI) of TiO2 and γ-Al2O3 nanosorbents indicate that adsorption is a predominant mechanism for Cd (II) removal from aqueous solution, giving maximum Cd (II) adsorption rates of 3348 and 1173 mg/kg for TiO2 and γ-Al2O3 nanoparticles, respectively, both obtained at the highest pH level (pH = 8) as well as the highest initial Cd (II) concentration (equal to 80 mg/ L). Cadmium removal efficiency with TiO2 and γ-Al2O3 nanoparticles has increased by raising pH from 6 to 8. The Freundlich adsorption isotherm model could fit the experimental equilibrium data well at different pH levels. Also, it has been revealed that cadmium adsorption drops as the ionic strength is increased. The maximum Cd (II) adsorption (1625 mg/kg) has been attained at 0.01 M ionic strength in the presence of NaCl. Thermodynamic calculations demonstrate the spontaneous nature of Cd (II) adsorption by TiO2 and γ-Al2O3 nanoparticles. The former (TiO2) have high adsorption capacities, suggesting they are probably effective metal sorbents, compared to the latter (γ-Al2O3).
Afficher plus [+] Moins [-]Speciation of four heavy metals in agricultural soils around DraaLasfarmine area in Marrakech (Morocco)
2015
Yassir, Barkouch | Alain, Pineau
This study was carried out to 1. determine spatial variations of heavy metal deposition in agricultural soils of two rural communities (OuledBouAicha and Tazakourte) of about 5790 ha in a mining area near Marrakech city in Morocco; 2. to assess the extent of metallic pollution generated by the mining activity and; 3. to identify the key mechanism responsible for this contamination and its relation to mining activity. Soil pollution assessment was carried out on one hand by measurement of the total metal concentration and on the other hand by studying four heavy metals speciation of the studied soils. The chemical forms of four heavy metals in soils around DraaLasfar mine were studied by determining soil Cd, Cu, Pb and Zn species using standard solvent extraction and Atomic Absorption Spectrophotometric techniques. The chemical pools of the metals indicated that the metals were distributed into six fractions with most of them residing in the non-residual fractions thus suggesting how readily the metals are released into the environment. Considering that the metals occur in the most available forms, we suggested that it is most likely that the metals must have been derived from anthropogenic sources especially from the mining activity in the studied region.
Afficher plus [+] Moins [-]Chemical Speciation, Bioavailability and Risk Assessments of Potentially Toxic Metals in Rainwaters as Indicators of Air Pollution
2023
Adegunwa, Abiodun | Adebiyi, Festus | Asubiojo, Olabode | Ore, Odunayo
Heavy metals contamination of rainwater is a function of the adsorbed metals present in the particulates of the atmosphere in which the rain was formed from and rainwater chemistry is an alternative way of monitoring urban air pollution for predominant metal species. Three distinct sampling sites (residential, industrial and commercial) were investigated in the south western part of Nigeria for one year. After acid digestion, quantification was done using a double-beam Atomic Absorption Spectrophotometer (AAS). The obtained results showed that heavy metals were predominantly present as free metal ion in the commercial and industrial areas but Mn and As mainly occurred in the suspended fraction. Residential area presented major fractions as bound to organic complexes except Cu and Cd which were principally available as suspended fraction. The health risks associated with the intake of the studied rainwaters indicated susceptibility to possible carcinogens upon consumption due to total RI > 10-4. Ecological risk assessment equally shown a very high level of ecological risks related with the metals due to RI ˃ 600. Sequel upon this, there is need for better sensitization of the citizenry to the sources and control of these pollutants.
Afficher plus [+] Moins [-]Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing
2022
Bars, Maureen Le | Legros, Samuel | Levard, Clément | Chevassus-Rosset, Claire | Montes, Mélanie | Tella, Marie | Borschneck, Daniel | Guihou, Abel | Angeletti, Bernard | Doelsch, Emmanuel | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | ANR-15-CE34-0003,DIGESTATE,Diagnostic des traitements des déchets et comportement des contaminants dans l'environnement(2015) | European Project: 795614,Marie Skodowska-Curie agreement
Partie B | International audience | Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68 Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68 ZnS. This combination was crucial to highlight the dissolution of nano-68 ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.
Afficher plus [+] Moins [-]Vulnerability and tolerance to nickel of periphytic biofilm harvested in summer and winter
2022
Laderriere, Vincent | Morin, Soizic | Eon, Mélissa | Fortin, Claude | Centre Eau Terre Environnement [Québec] (INRS - ETE) ; Institut National de la Recherche Scientifique [Québec] (INRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Nunavik
International audience | Metals are naturally present in freshwater ecosystems but anthropogenic activities like mining operations represent a long-standing concern. Metals released into aquatic environments may affect microbial communities such as periphytic biofilm, which plays a key role as a primary producer in stream ecosystems. Using two 28-day microcosm studies involving two different photoperiods (light/dark cycle of 16/8 vs 8/16), the present study assessed the effects of four increasing nickel (Ni) concentrations (0-6 mu M) on two natural biofilm communities collected at different seasons (summer and winter). The two communities were characterized by different structural profiles and showed significant differences in Ni accumulated content for each treatment. For instance, the biofilm metal content was four times higher in the case of summer biofilm at the highest Ni treatment and after 28 days of exposure. Biomarkers examined targeted both heterotrophic and autotrophic organisms. For heterotrophs, the 8-glucosidase and 8-glucosaminidase showed no marked effects of Ni exposure and were globally similar between the two communities suggesting low toxicity. However, the photosynthetic yield confirmed the toxicity of Ni on autotrophs with maximum inhibition of 81 +/- 7% and 60 +/- 1% respectively for the summer and winter biofilms. Furthermore, biofilms previously exposed to the highest long-term Ni con-centration ([Ni2+] = 6 mu M) revealed no acute effects in subsequent toxicity based on the PSII yield, suggesting a tolerance acquisition by the phototrophic community. Taken together, the results suggest that the biofilm response to Ni exposure was dependent of the function considered and that descriptors such as biofilm metal content could be seasonally dependent, information of great importance in a context of biomonitoring.
Afficher plus [+] Moins [-]X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena
2021
Pons, Marie-Laure | Collin, Blanche | Doelsch, Emmanuel | Chaurand, Perrine | Fehlauer, Till | Levard, Clément | Keller, Catherine | Rose, Jérôme | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
International audience | It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg.kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Afficher plus [+] Moins [-]Long-term fate of exogenous metals in a sandy Luvisol subjected to intensive irrigation with raw wastewater
2007
Dère, Christelle | Lamy, Isabelle | Jaulin, Anne, A. | Cornu, Sophie, S. | Unité de recherche Science du Sol (USS) ; Institut National de la Recherche Agronomique (INRA) | Unité de Science du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | From 1899 to 2002, sandy Luvisol in the Paris region has been intensively irrigated with raw wastewater, resulting in major soil pollution by metallic trace elements (MTE). To identify the soil phases implicated in retaining these metals, sequential extractions were performed on a solum irrigated with untreated wastewater and another reference solum. The endogenous and exogenous fractions of MTE in the contaminated soil were discriminated using correlations between MTE and major elements defined from unpolluted soils of the area. In the contaminated soil no exogenous lead and chromium are present below the surface horizon, whereas exogenous zinc and copper are found down to the base of the solum. The endogenous MTE are mainly found in the residual fraction. Exogenous MTE appear to be associated with organic matter in the surface horizon, and exogenous zinc seems to be readsorbed on iron and manganese oxyhydroxides in the underlying horizons. After 100 years of intensive irrigation with wastewater, no exogenous Pb and Cr are found in the subsoil, while exogenous Zn and Cu are found down to the base of the solum, mostly readsorbed.
Afficher plus [+] Moins [-]Gastric bioaccessibility is a conservative measure of nickel bioavailability after oral exposure: Evidence from Ni-contaminated soil, pure Ni substances and Ni alloys
2021
Dutton, Michael D. | Thorn, Ryan | Lau, Wilson | Vasiluk, Luba | Hale, Beverly
Oral bioaccessibility (BAc) is a surrogate for the bioavailability (BAv) of a broad range of substances, reflecting the value that the approach offers for assessing oral exposure and risk. BAc is generally considered to have been validated as a proxy for oral BAv for the important soil contaminants Pb, Cd, and As. Here, using literature data for Ni BAc and BAv, we confirmed that Ni BAc (gastric only, with HCl mimicking stomach conditions) is a conservative measure of BAv for the oral exposure pathway. Measured oral BAv of Ni in soil was shown to be 50–100 times less than the simplest oral BAc estimates (%BAv = 0.012(%BAc) - 0.023 (r = 0.701, 95%CI [0.456, 0.847], n = 30)) in rats, demonstrating a significant conservatism for exposure assessment. The relationship between the oral BAv and BAc of nickel sulfate hexahydrate (NSHH) was comparable to that of soil, with measured oral BAv of NSHH (1.94%) being a small fraction of NSHH gastric BAc (91.1%). BAc and BAv reflect the underlying Ni speciation of the sample, with the bioaccessible leaching limits being represented by the highly soluble Ni salts and the poorly soluble Ni monoxide, and the environmental (e.g. soil properties) or gastric (e.g. food present) conditions. BAc has potential utility for chemical classification purposes because pure Ni substances can be grouped by %BAc values(using standardized methodologies for the relevant exposure routes), these groupings reflecting the underlying chemistry and speciation of the samples of substances tested here, with 0.008% %BAc for alloys (SS304, SS316, Inconel, Monel), <1% in green NiO and Ni metal massives, 0.9–23.6% for Ni powders, 9.8–22.7% for Ni sulfides, 26.3–29.6% for black oxidic Ni, and 82–91% for the soluble Ni salts. Oral BAc provides realistic yet conservative estimates of BAv for the hazard classification and risk assessment of Ni substances.
Afficher plus [+] Moins [-]A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms
2020
Lin, Huirong | Wang, Chengyun | Zhao, Hongmei | Chen, Guancun | Chen, Xincai
The synergistic cooperation of microbial cells and their extracellular polymeric substances (EPS) in biofilms is critical for the biofilm’s resistance to heavy metals and the migration and transformation of heavy metals. However, the effects of different components of biofilms have not been fully understood. In this study, the spatial distribution and speciation of copper in the colloidal EPS, capsular EPS, cell walls and membranes, and intracellular fraction of unsaturated Pseudomonas putida (P. putida) CZ1 biofilms were fully determined at the subcellular level. It was found that 60–67% of copper was located in the extracellular fraction of biofilms, with 44.7–42.3% in the capsular EPS. In addition, there was 15.5–20.1% and 17.2–21.2% of copper found in the cell walls and membranes or the intracellular fraction, respectively. Moreover, an X-ray absorption fine structure spectra analysis revealed that copper was primarily bound by carboxyl-, phosphate-, and hydrosulfide-like ligands within the extracellular polymeric matrix, cell walls and membranes, and intracellular fraction, respectively. In addition, macromolecule quantification, fourier-transform infrared spectroscopy spectra and sulfur K-edge x-ray absorption near edge structure analysis further showed the carboxyl-rich acidic polysaccharides in EPS, phospholipids in cell walls and cell membranes, and thiol-rich intracellular proteins were involved in binding of copper in the different components of biofilm. The full understanding of the distribution and chemical species of heavy metals in biofilms not only promotes a deep understanding of the interaction mechanisms between biofilms and heavy metals, but also contributes to the development of effective biofilm-based heavy metal pollution remediation technologies.
Afficher plus [+] Moins [-]Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae
2020
Costa, Marcelo | Henriques, Bruno | Pinto, João | Fabre, Elaine | Viana, Thainara | Ferreira, Nicole | Amaral, Joana | Vale, Carlos | Pinheiro-Torres, José | Pereira, Eduarda
Potentially toxic elements (PTEs) are of major concern due to their high persistence and toxicity. Recently, rare earth elements (REEs) concentration in aquatic ecosystems has been increasing due to their application in modern technologies. Thus, this work aimed to study, for the first time, the influence of REEs (lanthanum, cerium, praseodymium, neodymium, europium, gadolinium, terbium, dysprosium and yttrium) and of salinity (10 and 30) on the removal of PTEs (Cd, Cr, Cu, Hg, Ni and Pb) from contaminated waters by living macroalgae (Fucus spiralis, Fucus vesiculosus, Gracilaria sp., Osmundea pinnatifida, Ulva intestinalis and Ulva lactuca). Experiments ran for 168 h, with each macroalga exposed to saline water spiked with the six PTEs and with the six PTEs plus nine REEs (all at 1 μmol L⁻¹) at both salinities. Results showed that all species have high affinity with Hg (90–99% of removal), not being affected neither by salinity changes nor by the presence of other PTEs or REEs. Cd showed the lowest affinity to most macroalgae, with residual concentrations in water varying between 50 and 108 μg L⁻¹, while Pb removal always increased with salinity decline (up to 80% at salinity 10). REEs influence was clearer at salinity 30, and mainly for Pb. No substantial changes were observed in Ni and Hg sorption. For the remaining elements, the effect of REEs varied among algae species. Overall, the results highlight the role of marine macroalgae as living biofilters (particularly U. lactuca), capable of lowering the levels of top priority hazardous substances (particularly Hg) and other PTEs in water, even in the presence of the new emerging contaminants - REEs. Differences in removal efficiency between elements and macroalgae are explained by the contaminant chemistry in water and by macroalgae characteristics.
Afficher plus [+] Moins [-]