Affiner votre recherche
Résultats 1-10 de 60
Effect of a thermal power plant waste fly ash on leguminous and non-leguminous leafy vegetables in extracting maximum benefits from P and K fertilization Texte intégral
2015
Inam, Akhtar | Sahay, Seema
Although the Indian population is largely vegetarian, not much attention has been given to the cultivation of vegetables, as compared to other crops like cereals, pulses and oil seeds. Therefore, the present study was conducted on two leafy vegetables, spinach (Spanacia oleracea L.) and methi (Trigonella foenum graecum L.) commonly grown in Aligarh, as the two popular vegetables of Indian diet. The study was conducted for two successive years and during the first year, phosphorus and fly ash interactions with a uniform dose of nitrogen and potassium on both vegetables was observed. During the second year, while keeping nitrogen and phosphorus uniform, potassium and fly ash combinations were studied again with both vegetables, to determine the optimum dose of inorganic fertilizers and fly ash combination. It was observed that fly ash applied at the rate of 15 t ha-1 along with N40P15K20, proved optimum for spinach while in the case of methi, N20P30K40 + FA10 was sufficient. Therefore, both vegetables can safely be grown with 10 to 15 t ha-1 of fly ash and a comparatively lower quantity of NPK.
Afficher plus [+] Moins [-]Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system Texte intégral
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Afficher plus [+] Moins [-]Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil Texte intégral
2018
Wu, Xiang | Wang, Wei | Zhu, Lizhong
The mechanism of enhanced accumulation of organic contaminants in crops with engineered nanomaterials (ENMs) were investigated by co-exposure of crops (Ipomoea aquatica Forsk (Swamp morning-glory), Cucumis sativus L. (cucumber), Zea mays L. (corn), Spinacia oleracea L. (spinach) and Cucurbita moschata (pumpkin))to a range of chemicals (polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ether (PBDE)) and ENMs (TiO2, Ag, Al2O3, graphene, carbon nanotubes (CNTs)) in soil. Induced by 50 mg kg−1 graphene co-exposure, the increase range of BDE-209, BaP, p,p′-DDE, HCB, PYR, FLU, ANT, and PHEN in the plants were increased in the range of 7.51–36.42, 5.69–32.77, 7.09–59.43, 11.61–66.73, 4.58–57.71, 5.79–109.07, 12.85–109.76, and15.57–127.75 ng g−1, respectively. The contaminants in ENMs-spiked and control soils were separated into bioavailable, bound and residual fractions using a sequential ultrasonic extraction procedure (SUEP) to investigate the mechanism of the enhanced accumulation. The bioavailable fraction in spiked soils showed no significant difference (p > 0.05) from that in the control, while the bound fraction increased in equal proportion (p > 0.05) to the reduction in the residual fraction. These results implied that ENMs can competitively adsorbed the bound of organic contaminants from soil and co-transferred into crops, followed by a portion of the residual fraction transferred to the bound fraction to maintain the balance of different fractions in soils. The mass balance was all higher than 98.5%, indicating the portion of degraded contaminants was less than 1.5%. These findings could expand our knowledge about the organic contaminants accumulation enhancement in crops with ENMs.
Afficher plus [+] Moins [-]The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil Texte intégral
2016
Amato-Lourenco, Luís Fernando | Moreira, Tiana Carla Lopes | de Oliveira Souza, Vanessa Cristina | Barbosa, Fernando | Saiki, Mitiko | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Mauad, Thais
Although urban horticulture provides multiple benefits to society, the extent to which these vegetables are contaminated by the absorption of chemical elements derived from atmospheric deposition is unclear. This study was designed to evaluate the influence of air pollution on leafy vegetables in community gardens of Sao Paulo, Brazil. Vegetable seedlings of Brassica oleracea var. acephala (collard greens) and Spinacia oleracea (spinach) obtained in a non-polluted rural area and growing in vessels containing standard uncontaminated soil were exposed for three consecutive periods of 30, 60 and 90 days in 10 community gardens in Sao Paulo and in one control site. The concentrations of 17 chemical elements (traffic-related elements and those essential to plant biology) were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Tillandsia usneoides L. specimens were used as air plant biomonitors. The concentrations of As, Cd, Cr and Pb found in vegetables were compared to the recommended values for consumption. Principal Component Analysis (PCA) was used to cluster the elemental concentrations, and Generalized Linear Models (GLMs) were employed to evaluate the association of the factor scores from each PCA component with variables such as local weather, traffic burden and vertical barriers adjacent to the gardens. We found significant differences in the elemental concentrations of the vegetables in the different community gardens. These differences were related to the overall traffic burden, vertical obstacles and local weather. The Pb and Cd concentrations in both vegetables exceeded the limit values for consumption after 60 days of exposure. A strong correlation was observed between the concentration of traffic-related elements in vegetables and in Tillandsia usneoides L. An exposure response was observed between traffic burden and traffic-derived particles absorbed in the vegetables. Traffic-derived air pollution directly influences the absorption of chemical elements in leafy vegetables, and the levels of these elements may exceed the recommended values for consumption.
Afficher plus [+] Moins [-]Municipal composts reduce the transfer of Cd from soil to vegetables Texte intégral
2016
Al Mamun, Shamim | Chanson, Guilhem | Muliadi, | Benyas, Ebrahim | Aktar, Munmun | Lehto, Niklas | McDowell, Richard | Cavanagh, J. E. (Jo-Anne E.) | Kellermann, Liv | Clucas, Lynne | Robinson, Brett
Cadmium (Cd) is a non-essential trace element that accumulates in agricultural soils through the application of Cd-rich phosphate fertiliser. Vegetables can accumulate Cd to concentrations that sometimes exceed food safety standards. We investigated the potential of low-cost soil amendments to reduce Cd uptake by spinach (Spinacia oleracea L.), lettuce (Lactuca sativa L.) and onion (Allium cepa L.). Batch sorption experiments revealed the relative sorption of Cd by biosolids, charcoal, lignite, sawdust, two types of compost, bentonite and zeolite. Lignite and compost had the greatest ability to sorb Cd and were subsequently selected for pot trials, which elucidated their effect on Cd uptake by onions, spinach and lettuce in two market garden soils with native Cd concentrations of 1.45 mg/kg and 0.47 mg/kg. The addition of 2.5% (dry w/w) municipal compost reduced the Cd concentration in onions, spinach and lettuce by up to 60% in both soils. The addition of lignite gave variable results, which depended on the soil type and rate of addition. This Cd immobilisation was offset by soil acidification caused by the lignite. The results indicate that municipal compost is a low-cost soil conditioner that is effective in reducing plant Cd uptake.
Afficher plus [+] Moins [-]Effects of ozone on crops in north-west Pakistan Texte intégral
2013
Ahmad, Muhammad Nauman | Büker, Patrick | Khalid, Sofia | Van Den Berg, Leon | Shah, Hamid Ullah | Wahid, Abdul | Emberson, Lisa | Power, Sally A. | Ashmore, Mike
Although ozone is well-documented to reduce crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects in other parts of south Asia. We surveyed crops close to the city of Peshawar, in north-west Pakistan, for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found on potato, onion and cotton when mean monthly ozone concentrations exceeded 45 ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60 ppb significantly reduce the growth of a major Pakistani onion variety. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations measured in April–May in Peshawar, and used in the fumigation experiment, are comparable to those that have been modelled to occur over many parts of south Asia, where ozone may be a significant threat to sensitive crops.
Afficher plus [+] Moins [-]Severe contamination of carcinogenic heavy metals and metalloid in agroecosystems and their associated health risk assessment Texte intégral
2022
Kumar, Pradeep | Dīpti, | Kumar, Sunil | Singh, Rana Pratap
The contamination of toxic heavy metals (i.e., Cd, Cr, Pb, and Ni) and metalloid (i.e., As) (TMMs) is considered as a major cause of increasing incidences of human and livestock cancers, gastrointestinal disorders and neurological problems. The levels of these TMMS in soil, irrigation water, and plants like Salanum lycopersicum (tomato), Spinacia oleracea (Spinach), and Triticum aestivum (Wheat) samples were detected which were collected from various localities across 100 km around the city of Lucknow, India. This study reported that the concentration of TMMs was within the range of maximum allowable concentration (MAC) (FAO/WHO, 2011) in most of the agricultural soil, whereas, it was higher in irrigation water. The TMMs levels in the edible parts of vegetables and cereal were in the range 1.91–53.94 μg/g, 5.06–40.49 μg/g, 4.08-2312-29 μg/g, 0.43–51.48 μg/g, and 0.01–1.65 μg/g, respectively which was significantly higher than the MAC. The BAF of Cd and Ni was very high in the edible parts of the vegetables and cereal samples indicating an entry of TMMs in food chain through the metal-contaminated irrigation water, even if TMMs are low in the field soil. The contamination coefficient (Cfi) and Ecological risk factors (Efi) of the TMMs were detected in the range of low risk in all agricultural soil. The Ecological risk index (ERI) of TMMs was at moderate risk, indicating a mild impact of the metal toxicity in the agro-ecosystems but the high risk on the consumers. The daily intake (DI) of TMMs through vegetables and cereal was below the maximum allowable daily intake (MTDI) but the carcinogenic risk factor (CRs) potential of Cr, Cd, Ni, and As was observed significantly higher for these vegetables and cereal, which indicated a complex scenario of a far-future carcinogenic health hazard on consumers in densely populated city of Lucknow, India and its surrounding regions.
Afficher plus [+] Moins [-]Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine Texte intégral
2021
Pelcová, Pavlína | Ridošková, Andrea | Hrachovinová, Jana | Grmela, Jan
Knowledge of the concentration of the bioavailable forms of mercury in the soil is necessary, especially, if these soils contain above-limit total mercury concentrations. The bioavailability of mercury in soil samples collected from the vicinity of abandoned cinnabar mines was evaluated using diffusive gradients in the thin films technique (DGT) and mercury phytoaccumulation by vegetables (lettuce, spinach, radish, beetroot, carrot, and green peas). Mercury was accumulated primarily in roots of vegetables. The phytoaccumulation of mercury into edible plant parts was site-specific as well as vegetable species-specific. The mercury concentration in edible parts decreased in the order: spinach leaf ≥ lettuce leaf ≥ carrot storage root ≥ beetroot storage root > radish storage root > pea legume. The translocation index as well as the target hazard quotient indicate the possible usability of soils from the vicinity of abandoned cinnabar mines for planting pod vegetables (peas). A strong positive correlation (r = 0.75 to 0.92, n > 30, p < 0.05) was observed between mercury concentration in secondary roots, the storage roots, leaves of vegetables and the flux of mercury from soil to the DGT units, and the effective concentration of mercury in soil solutions.
Afficher plus [+] Moins [-]Polybrominated diphenyl ethers (PBDEs) concentrations in soil and plants around municipal dumpsites in Abuja, Nigeria Texte intégral
2021
Oloruntoba, K. D. | Sindiku, Omotayo | Osibanjo, Oladele | Herold, Christine | Weber, Roland
Polybrominated diphenyl ethers (PBDEs) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. It has been established that PBDEs may be released into the environment during improper handling and disposal of e-waste and other products containing PBDEs that is prevalent in developing countries. This research work assessed the status of PBDE contamination at dumpsites in Nigeria. Soil and edible plant samples were collected from the dumpsites and control sites for analysis. The concentrations of ∑₇PBDE in the topsoils around the dumpsites at 0–15 cm depth ranged from 112 to 366 ng/g dry weight (dw) while that of the topsoil of the control site 500 m from the dumpsite ranged from 26.8 to 39.7 ng/g dw. These high concentrations stem likely from open burning of waste including electronic waste on the landfills. Plant samples (bentgrass, spinach, tomatoes, pumpkin and sweet potatoes) around the dumpsites were found to be contaminated by PBDEs with levels ranging from 25.0 to 60.5 ng/g dw in plant roots and from 8.45 to 32.2 ng/g dw in plant shoots for ∑₇PBDE. This suggests that consumption of vegetables by humans and ingestion of contaminated soils and feed by chickens and cows can transfer PBDEs into the human food chain around the dumpsites. The comparison of PBDE levels in soils and the PBDE levels in chicken eggs from the former study indicate that PBDE levels in the soils are sufficient to explain the levels in the chicken eggs with a reasonable carry-over rate for PBDEs of 0.28 on average. The PBDE contamination in the soil was sufficient to result in a relevant exposure of humans via accumulation in eggs. The study shows that a better management of end-of-life products containing PBDEs is needed to reduce PBDE exposure risk in Africa.
Afficher plus [+] Moins [-]The distributions of three fungicides in vegetables and their potential health risks in Zhejiang, China: A 3-year study (2015–2017) Texte intégral
2020
Lin, Shu | Tang, Tao | Cang, Tao | Yu, Shuqing | Ying, Zeteng | Gu, Sijia | Zhang, Quan
Fungicides have been extensively used around the world in agriculture due to their effectiveness of sterilization. Recent evidences have shown that fungicides would exert a negative effect on gut microbiota and result in gut microbiota dysbiosis and metabolism disorder on non-target organisms and even humans. However, research on residues and potential health risks of fungicides in daily consumed vegetables has received less attention compared to insecticides. In this study, we studied three widely applied fungicides, procymidone, dimethomorph, and azoxystrobin, in China. We collected 551 samples of 10 different vegetables in 11 cities from Zhejiang province during 2015–2017. Three fungicides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average apparent recoveries of three fungicides ranged from 84.2% to 110% with the relative standard deviations lower than 10%. The LOD values of procymidone, dimethomorph, and azoxystrobin was 2, 0.09, and 1 μg/kg, respectively. The levels of procymidone, dimethomorph, and azoxystrobin in those vegetables ranged from ND-875, ND-238, and ND-76 μg/kg, respectively. The highest mean concentrations of procymidone, dimethomorph, and azoxystrobin were found in eggplant (68 μg/kg), spinach (16.4 μg/kg), and kidney bean (4 μg/kg), respectively. Tomato (62.6% of samples), eggplant (44.3% of samples), and cucumber (41.6% of samples) were most frequently detected with fungicides. Solanaceous fruit vegetables have the highest detection rate than other vegetables, and fungicides were most frequently detected in winter. The mean concentrations of three fungicides in different vegetables were all below the maximum residue limits for the national food safety standards of China, and the health risks resulting from consuming those vegetables in adults and children were all within the safe ranges. The data provided here clarify the distributions of fungicides in commonly consumed vegetables and their potential health risks.
Afficher plus [+] Moins [-]