Affiner votre recherche
Résultats 1-10 de 871
Comprehensive investigation of persistent and mobile chemicals and per- and polyfluoroalkyl substances in urine of flemish adolescents using a suspect screening approach
2022
Kim, Da-Hye | Jeong, Yunsun | Belova, Lidia | Roggeman, Maarten | Fernández, Sandra F. | Poma, Giulia | Rémy, Sylvie | Verheyen, Veerle J. | Schoeters, Greet | van Nuijs, Alexander L.N. | Covaci, Adrian
Persistent and mobile chemicals (PMs) and per- and polyfluoroalkyl substances (PFAS) are groups of chemicals that have received recent global attention due to their potential health effects on the environment and humans. In this study, exposure to a broad range of PMs and PFAS was investigated in Flemish adolescents’ urine samples (n = 83) using a suspect screening approach. For this purpose, three sample preparation methods were evaluated, and a basic liquid-liquid extraction was optimized for urine analysis based on the extraction efficiency of PMs (53–80%) and PFAS (>70%). In total, 9 PMs were identified in urine samples at confidence levels (CL) 1–3 and, among them, acetaminophen, 4-aminophenol, 2,2,6,6-tetramethyl-4-piperidone, trifluoroacetic acid (TFAA), sulisobenzone, ethyl sulfate, and 1,2-benzisothiazol-3(2H)-one 1,1-dioxide were confirmed at CL 1 and 2. In addition, the detection and identification of 2,2,6,6-tetramethyl-4-piperidone, 4-aminophenol, TFAA, and m-(2,3-epoxypropoxy)-N,N-bis(2,3-epoxypropyl) aniline (CL 3), has been reported for the first time in human urine in this study. For PFAS, only 2 compounds were identified at CL 4, implying that urine is not a suitable matrix for suspect screening of such compounds. A significant difference between sexes was observed in the detection rate of identified PMs, in particular for acetaminophen, 4-aminophenol, and sulisobenzone. The findings of this study can be used in future human biomonitoring programs, such as by including the newly identified compounds in quantitative methods or monitoring in other human matrices (e.g., serum).
Afficher plus [+] Moins [-]PM2.5 drives bacterial functions for carbon, nitrogen, and sulfur cycles in the atmosphere
2022
Liu, Huan | Hu, Zhichao | Zhou, Meng | Zhang, Hao | Zhang, Xiaole | Yue, Yang | Yao, Xiangwu | Wang, Jing | Xi, Chuanwu | Zheng, Ping | Xu, Xiangyang | Hu, Baolan
Airborne bacteria may absorb the substance from the atmospheric particles and play a role in biogeochemical cycling. However, these studies focused on a few culturable bacteria and the samples were usually collected from one site. The metabolic potential of a majority of airborne bacteria on a regional scale and their driving factors remain unknown. In this study, we collected particulates with aerodynamic diameter ≤2.5 μm (PM₂.₅) from 8 cities that represent different regions across China and analyzed the samples via high-throughput sequencing of 16S rRNA genes, quantitative polymerase chain reaction (qPCR) analysis, and functional database prediction. Based on the FAPROTAX database, 326 (80.69%), 191 (47.28%) and 45 (11.14%) bacterial genera are possible to conduct the pathways of carbon, nitrogen, and sulfur cycles, respectively. The pathway analysis indicated that airborne bacteria may lead to the decrease in organic carbon while the increase in ammonium and sulfate in PM₂.₅ samples, all of which are the important components of PM₂.₅. Among the 19 environmental factors studied including air pollutants, meteorological factors, and geographical conditions, PM₂.₅ concentration manifested the strongest correlations with the functional genes for the transformation of ammonium and sulfate. Moreover, the PM₂.₅ concentration rather than the sampling site will drive the distribution of functional genera. Thus, a bi-directional relationship between PM₂.₅ and bacterial metabolism is suggested. Our findings shed light on the potential bacterial pathway for the biogeochemical cycling in the atmosphere and the important role of PM₂.₅, offering a new perspective for atmospheric ecology and pollution control.
Afficher plus [+] Moins [-]Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil
2022
Zhang, Lijie | Philben, Michael | Taş, Neslihan | Johs, Alexander | Yang, Ziming | Wullschleger, Stan D. | Graham, David E. | Pierce, Eric M. | Gu, Baohua
Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.
Afficher plus [+] Moins [-]Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015–2018
2022
Kwak, Nohhyeon | Lee, Haebum | Maeng, Hyunok | Seo, Arom | Lee, Kwangyul | Kim, Seojeong | Lee, Meehye | Cha, Joo Wan | Shin, Beomcheol | Park, Kihong
Airborne fine particles can affect climate change and human health; moreover, they can be transported over significant distances. However, studies on characteristics of individual particles and their morphology, elemental composition, aging processes, and spatial distribution after long-range transport over the Yellow Sea are limited. Therefore, in this study, we conducted shipborne measurements of fine particulate matter of less than 2.5 μm in diameter (PM₂.₅) over the Yellow Sea and classified the individual particles into seven types based on their morphology and composition. Overall, the percentage of organic-rich particles was the highest, followed by that of sea spray, sulfur-rich, dust, metals, fly ash, soot, and other particles. Near Shandong, China, the percentage of fly ash and sulfur-rich particles increased, while an increased percentage of only sulfur-rich particles was observed near the Korean Peninsula. In the open sea, the PM₂.₅ concentrations were the lowest, and sea spray particles predominated. During the cruises, three types (Types 1, 2, and 3) of events with substantially increased PM₂.₅ concentrations occurred, each with different dominant particles. Type 1 events frequently featured air masses from northern China and Mongolia with high wind speeds and increased dust particles. Type 2 events involved air masses from China with high wind speeds; fly ash, soot, organic-rich particles, and the sulfate percentage in PM₂.₅ increased. Type 3 events displayed stagnant conditions and local transport (from Korea); soot, dust particles, and the secondary sulfate and nitrate percentages in PM₂.₅ increased. Thus, different types of transport affected concentrations and dominant types of fine particles over the Yellow Sea during spring.
Afficher plus [+] Moins [-]Evaluating the influence of constant source profile presumption on PMF analysis of PM2.5 by comparing long- and short-term hourly observation-based modeling
2022
Xie, Mingjie | Lu, Xinyu | Ding, Feng | Cui, Wangnan | Zhang, Yuanyuan | Feng, Wei
Hourly PM₂.₅ speciation data have been widely used as an input of positive matrix factorization (PMF) model to apportion PM₂.₅ components to specific source-related factors. However, the influence of constant source profile presumption during the observation period is less investigated. In the current work, hourly concentrations of PM₂.₅ water-soluble inorganic ions, bulk organic and elemental carbon, and elements were obtained at an urban site in Nanjing, China from 2017 to 2020. PMF analysis based on observation data during specific pollution (firework combustion, sandstorm, and winter haze) and emission-reduction (COVID-19 pandemic) periods was compared with that using the whole 4-year data set (PMFwₕₒₗₑ). Due to the lack of data variability, event-based PMF solutions did not separate secondary sulfate and nitrate. But they showed better performance in simulating average concentrations and temporal variations of input species, particularly for primary source markers, than the PMFwₕₒₗₑ solution. After removing event data, PMF modeling was conducted for individual months (PMFₘₒₙₜₕ) and the 4-year period (PMF₄₋yₑₐᵣ), respectively. PMFₘₒₙₜₕ solutions reflected varied source profiles and contributions and reproduced monthly variations of input species better than the PMF₄₋yₑₐᵣ solution, but failed to capture seasonal patterns of secondary salts. Additionally, four winter pollution days were selected for hour-by-hour PMF simulations, and three sample sizes (500, 1000, and 2000) were tested using a moving window method. The results showed that using short-term observation data performed better in reflecting immediate changes in primary sources, which will benefit future air quality control when primary PM emissions begin to increase.
Afficher plus [+] Moins [-]Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China
2022
Li, Xia | Bei, Naifang | Wu, Jiarui | Wang, Ruonan | Liu, Suixin | Liu, Lang | Jiang, Qian | Tie, Xuexi | Molina, Luisa T. | Li, Guohui
Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O₃) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O₃ concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM₂.₅) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.
Afficher plus [+] Moins [-]Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics
2022
Hung, Chang-Mao | Chen, Chiu-Wen | Huang, Jinbao | Dong, Cheng-Di
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B–N, B–C, and B₂O₃ species). Radical quenching tests revealed SO₄•⁻, HO•, and ¹O₂ being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR–CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR–CAOP combined with bioprocesses for removing STZ from aqueous environments.
Afficher plus [+] Moins [-]Molecular mechanism of zero valent iron-enhanced microbial azo reduction
2021
Fang, Yun | Chen, Xingjuan | Zhong, Yin | Yang, Yonggang | Liu, Fei | Guo, Jun | Xu, Meiying
Zero valent iron (ZVI)–microbe technology has an increasing application on the removal of organic pollution, yet the molecular mechanism of microbe respond to ZVI is still a mystery. Here, we established a successive ZVI-enhanced microbial system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) by whole genome transcriptional analysis. The addition of ZVI to the microbial degradation system increases the rate of azo reduction from ~60% to over 99% in 16 h reaction, suggesting the synergistic effect of ZVI and S12 on azo dye degradation. Comparing with the treatment without ZVI, less filamentous cells were observed in ZVI treated system, and approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that the induced [Ni–Fe] H₂ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while the reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced organic pollution biotreatment in S. decolorationis S12.
Afficher plus [+] Moins [-]Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream
2021
Chandler, Lisa | Harford, Andrew J. | Hose, Grant C. | Humphrey, Chris L. | Chariton, Anthony | Greenfield, Paul | O'Neill, Jenny
Bacteria and archaea (prokaryotes) are vital components for maintaining healthy function of groundwater ecosystems. The prokaryotic community composition and associated putative functional processes were examined in a shallow sandy aquifer in a wet-dry tropical environment. The aquifer had a contaminated gradient of saline mine-water, which primarily consisted of elevated magnesium (Mg²⁺) and sulfate (SO₄²⁻), although other major ions and trace metals were also present. Groundwaters were sampled from piezometers, approximately 2 m in depth, located in the creek channel upstream and downstream of the mine-water influence. Sampling occurred during the dry-season when only subsurface water flow was present. Next generation sequencing was used to analyse the prokaryote assemblages using 16S rDNA and metabolic functions were predicted with FAPROTAX. Significant changes in community composition and functional processes were observed with exposure to mine-waters. Communities in the exposed sites had significantly lower relative abundance of methanotrophs such as Methylococcaceae and methanogens (Methanobacteriaceae), but higher abundance in Nitrososphaeraceae, associated with nitrification, indicating potentially important changes in the biogeochemistry of the exposed sites. The changes were most strongly correlated with concentrations of SO₄²⁻, Mg²⁺ and Na⁺. This knowledge allows an assessment of the risk of mine-water contamination to groundwater ecosystem function and aids mine-water management.
Afficher plus [+] Moins [-]Multiple isotopic tracing for sulfate and base cation sources of precipitation in Hangzhou city, Southeast China: Insights for rainwater acidification mechanism
2021
Wu, Yao | Liu, Wenjing | Xu, Yifu | Xu, Zhifang | Zhou, Xiaode | Zhou, Lian
Acid deposition has been regarded as a serious factor in the deteriorative water environment and ecosystems. Despite the powerful acid emission control measures have been implemented by the Chinese government, many areas (especially Southeast China) are still suffering from acid deposition. The chemical and isotopic (δ³⁴S and ⁸⁷Sr/⁸⁶Sr) compositions of rainwater in Hangzhou, a typical megacity in Southeast China with serious acid rain problem, for one year were studied with the aim to better constrain potential sources and explore the causes of rainwater acidification. Most rainwater samples were acidic, with a VWM pH value of 4.65. SO₄²⁻ was the dominant anion and the main acid ion in rainwater. Sulfur isotope and the quantity equilibrium model revealed that sea salt, crustal, biogenic, and anthropogenic sulfur represented 2.3%, 0.1%, 16.7%, and 80.8% of the SO₄²⁻ source in rainwater, respectively. The back trajectory and strontium isotopes indicated that the base cations (BCs) in rainwater originated mainly from anthropogenic sources. The relatively low neutralizing capacity caused by limited BCs input and emission control measures undermines some efforts to reduce rainwater acidity. This case study demonstrated that a valuable tool to probe the source of acid rain and unravel the mechanism of rainwater acidification can be provided by multiple lines of evidence, including rainwater chemical compositions, stable sulfur isotopes, and stable strontium isotopes.
Afficher plus [+] Moins [-]