Affiner votre recherche
Résultats 1-10 de 68
High contamination of a sentinel vertebrate species by azoles in vineyards: a study of common blackbirds (Turdus merula) in multiple habitats in western France Texte intégral
2023
Angelier, Frédéric | Prouteau, Louise | Brischoux, François | Chastel, Olivier | Devier, Marie-Hélène | Le Menach, Karyn | Martin, Stéphan | Mohring, Bertille | Pardon, Patrick | Budzinski, Hélène | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS) | Environmental and Marine Biology ; Åbo Academy University | ANR-16-CE02-0004,URBASTRESS,Influence de l'urbanisation sur les populations de vertébrés: une approche éco-physiologique(2016) | ANR-20-CE34-0008,VITIBIRD,Impact des pesticides sur les populations aviaires des vignobles français: une approche intégrative(2020)
International audience | Azoles represent the most used family of organic fungicides worldwide and they are used in agriculture to circumvent the detrimental impact of fungi on yields. Although it is known that these triazoles can contaminate the air, the soil, and the water, field data are currently and dramatically lacking to assess if, and to what extent, the use of triazoles could contaminate non-target wild vertebrate species, notably in agroecosystems. In this study, we aimed to document for the first time the degree of blood contamination of a generalist wild bird species by multiple azoles which are used for plant protection and fungi pest control in various habitats. We deployed passive air samplers and captured 118 Common blackbirds (Turdus merula) in an agroecosystem (vineyard), a protected forest, and a city in western France. We collected blood and analyzed the plasma levels of 13 triazoles and 2 imidazoles. We found that a significant percentage of blackbirds living in vineyards have extremely high plasma levels of multiple azoles (means (pg.g⁻¹); tebuconazole: 149.23, difenoconazole: 44.27, fenbuconazole: 239.38, tetraconazole: 1194.16), while contamination was very limited in the blackbirds from the protected forest and absent in urban blackbirds. Interestingly, we also report that the contamination of blackbirds living in vineyard was especially high at the end of Spring and the beginning of Summer and this matches perfectly with the results from the passive air samplers (i.e., high levels of azoles in the air of vineyards during June and July). However, we did not find any correlation between the levels of plasma contamination by azoles and two simple integrative biomarkers of health (feather density and body condition) in this sentinel species. Future experimental studies are now needed to assess the potential sub-lethal effects of such levels of contamination on the physiology of non-target vertebrate species.
Afficher plus [+] Moins [-]A common fungicide tebuconazole promotes colitis in mice via regulating gut microbiota Texte intégral
2022
Meng, Zhiyuan | Sun, Wei | Liu, Wan | Wang, Yu | Jia, Ming | Tian, Sinuo | Chen, Xiaojun | Zhu, Wentao | Zhou, Zhiqiang
As a common fungicide, tebuconazole are ubiquitous in the natural environment and poses many potential risks. In this study, we examined the effects of exposure to tebuconazole on colitis in mice and explored its underlying mechanism. Specifically, exposure to tebuconazole could cause structural damage and inflammatory cell infiltration in colon tissue, activate the expression of inflammation-related genes, disrupt the expression of barrier function-related genes, and induce the colonic inflammation in mice. Similarly, exposure to tebuconazole could also exacerbate DSS-induced colitis in mice. In addition, we found that tebuconazole also could change the composition of the gut microbiota. In particular, tebuconazole significantly increases the relative abundance of Akkermansia of mice. Moreover, tebuconazole resulted in metabolic profiles disorders of the serum, leading to significant changes in the relative contents of metabolites involving glycolipid metabolism and amino acid metabolism. Particularly, the results of the gut microbiota transplantation experiment showed that exposure to tebuconazole could induced colonic inflammation in mice in a gut microbiota–dependent manner. Taken together, these results indicated that tebuconazole could induce colitis in mice via regulating gut microbiota. Our findings strongly support the concept that the gut microbiota is a key trigger of inflammatory bowel disease caused by pesticide intake.
Afficher plus [+] Moins [-]Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications Texte intégral
2021
Singh, Vipendra Kumar | Pal, Rajesh | Srivastava, Priyansh | Misra, Gauri | Shukla, Yogeshwer | Sharma, Pradeep Kumar
Exposure to environmental endocrine disrupting chemicals (EDCs) is highly suspected in prostate carcinogenesis. Though, estrogenicity is the most studied behavior of EDCs, the androgenic potential of most of the EDCs remains elusive. This study investigates the androgen mimicking potential of some common EDCs and their effect in androgen-dependent prostate cancer (LNCaP) cells. Based on the In silico interaction study, all the 8 EDCs tested were found to interact with androgen receptor with different binding energies. Further, the luciferase reporter activity confirmed the androgen mimicking potential of 4 EDCs namely benzo[a]pyrene, dichlorvos, genistein and β-endosulfan. Whereas, aldrin, malathion, tebuconazole and DDT were reported as antiandrogenic in luciferase reporter activity assay. Next, the nanomolar concentration of androgen mimicking EDCs (benzo[a]pyrene, dichlorvos, genistein and β-endosulfan) significantly enhanced the expression of AR protein and subsequent nuclear translocation in LNCaP cells. Our In silico studies further demonstrated that androgenic EDCs also bind with epigenetic regulatory enzymes namely DNMT1 and HDAC1. Moreover, exposure to these EDCs enhanced the protein expression of DNMT1 and HDAC1 in LNCaP cells. These observations suggest that EDCs may regulate proliferation in androgen sensitive LNCaP cells by acting as androgen mimicking ligands for AR signaling as well as by regulating epigenetic machinery. Both androgenic potential and epigenetic modulatory effects of EDCs may underlie the development and growth of prostate cancer.
Afficher plus [+] Moins [-]The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer-detritivore system Texte intégral
2018
Newton, Kymberly | Zubrod, Jochen P. | Englert, Dominic | Lüderwald, Simon | Schell, Theresa | Baudy, Patrick | Konschak, Marco | Feckler, Alexander | Schulz, Ralf | Bundschuh, Mirco
Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder (Alnus glutinosa) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder Gammarus fossarum. During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on G. fossarum was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of Gammarus for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs.
Afficher plus [+] Moins [-]Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils Texte intégral
2018
Svobodová, Markéta | Šmídová, Klára | Hvězdová, Martina | Hofman, Jakub
Agriculture is today indispensably connected with enormous use of pesticides. Despite tough regulation, their entrance into soil cannot be excluded and they might enter soil organisms and plants and continue further to terrestrial food chains. This study was conducted to investigate the bioaccumulation of two pesticides currently used in large amounts, the insecticide chlorpyrifos (CLP) and the fungicide tebuconazole (TBZ). Their detailed uptake kinetics in the model earthworm species Eisenia andrei were measured in two arable soils differing in organic carbon content (1.02 and 1.93% respectively). According to our results, a steady state was reached after 3–5 days for both pesticides and soils. The values of bioaccumulation factors calculated at the steady state ranged from 4.5 to 6.3 for CLP and 2.2–13.1 for TBZ. Bioaccumulation factors were also calculated as the ratio of uptake and elimination rate constants with results comparable with steady-state bioaccumulation factors. The results suggested that the degradation and bioaccumulation of tested compounds might be influenced by other factors than only total organic carbon (e.g. clay content). The lower Koc and hydrophobicity of TBZ relative to CLP probably led to higher availability of TBZ through pore water exposure. On the other hand, CLP's higher hydrophobicity probably caused an increase in availability by its additional uptake via ingestion. To enable a proper ecological risk assessment of current pesticides in soils, it is necessary to accurately determine their bioaccumulation in soil invertebrates. We believe that our study not only brings such information for two specific pesticides but also addresses key methodological issues in this area.
Afficher plus [+] Moins [-]Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity Texte intégral
2017
Lv, Xuan | Pan, Liumeng | Wang, Jiaying | Lü, Liping | Yan, Weilin | Zhu, Yanye | Xu, Yiwen | Guo, Ming | Zhuang, Shulin
Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.
Afficher plus [+] Moins [-]Occurrence of azole and strobilurin fungicides in indoor dust from three cities of China Texte intégral
2022
Liu, Juan | Wan, Yanjian | Jiang, Ying | Xia, Wei | He, Zhenyu | Xu, Shunqing
Widespread use of fungicides has raised the concern of exposure to them among the general population. However, there are extremely limited studies reporting the occurrence of fungicides in indoor dust in China. This study aimed to determine ten agricultural fungicides in indoor dust samples collected in three cities of China from 2016 to 2019, assess spatial and seasonal variations, and estimate the related exposure via dust ingestion. Six out of ten fungicides including difenoconazole, prochloraz, tebuconazole, tricyclazole, azoxystrobin, and pyraclostrobin were frequently detected in the dust samples (ranged 65.8–97.7%) and the concentrations of some fungicides showed a strong correlation with each other. Difenoconazole was the most abundant one among the selected fungicides. The highest level of the selected fungicides was observed in the indoor dust collected from Wuhan in summer 2019 (median cumulative concentration of the fungicides: 62.6 ng/g), while the relatively low concentrations of fungicides were found in the dust from Taiyuan (2.08 ng/g). Heavier fungicide contamination was observed in urban districts compared to that in rural districts. Seasonal variations in the fungicide residuals were also identified. The exposure assessment suggested that intake of the selected fungicides via dust ingestion was much lower than dietary intake reported in other studies. This study filled the data gap of fungicide residuals in the indoor dust in China and further studies are needed to identify the sources and determinants of indoor fungicide contamination.
Afficher plus [+] Moins [-]Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles Texte intégral
2021
Han, Lingxi | Kong, Xiabing | Xu, Min | Nie, Jiyun
Tebuconazole is a broad-spectrum triazole fungicide that has been extensively applied in agriculture, but its toxicity on soil ecology remains unknown after repeated introduction to soil. This study investigated the degradation of tebuconazole and the changes in soil microbial community composition and functional diversity as well as network complexity in soil repeatedly treated with tebuconazole. Tebuconazole degraded slowly as the degradation half-life initially increased and then decreased during the four repeated treatments. High concentration of tebuconazole treatment significantly delayed the degradation of tebuconazole. The soil microbial functional diversity in tebuconazole-treated soils showed an inhibition-recovery-stimulation trend with increasing treatment frequency, which was related to the increased degradation rates of tebuconazole. Tebuconazole significantly decreased soil microbial biomass and bacterial community diversity, and this decreasing trend became more pronounced with increasing treatment frequency and concentration. Moreover, tebuconazole significantly decreased soil bacterial community network complexity, particularly at high concentration of tebuconazole treatment. Notably, four bacterial genera, Methylobacterium, Burkholderia, Hyphomicrobium, and Dermacoccus, were identified as the potential tebuconazole-degrading bacteria, with the relative abundances in the tebuconazole treatment significantly increasing by 42.1–34687.1% compared to the control. High concentration of tebuconazole treatment delayed increases in the relative abundances of Methylobacterium but promoted those of Burkholderia, Hyphomicrobium and Dermacoccus. Additionally, repeated tebuconazole treatments improved only four metabolic pathways, cell motility, membrane transport, environmental information processing, and xenobiotics biodegradation and metabolism, which were associated with the degradation of tebuconazole. The above results indicated that repeated tebuconazole treatments resulted in the significant accumulation of residues and long-term negative effects on soil ecology, and also emphasized the potential roles of dominant indigenous microbial bacteria in the degradation of tebuconazole.
Afficher plus [+] Moins [-]Cumulative risk assessment of dietary exposure to triazole fungicides from 13 daily-consumed foods in China Texte intégral
2021
Cui, Kai | Wu, Xiaohu | Zhang, Ying | Cao, Junli | Wei, Dongmei | Xu, Jun | Dong, Fengshou | Liu, Xingang | Zheng, Yongquan
The agroeconomic benefits of the routine use of triazole fungicides on crops have been evident for more than 40 years. However, increasing evidence shows that residues of triazoles are ubiquitous in various foods and thus could pose a potential health risk to humans. We analyzed 3406 samples of 13 food commodities that were collected from markets in 9 regions across China, and assessed the health risk of both chronic and acute exposure to the triazoles for Chinese children (1–6 years old) and the general population. Among all samples, 55.52% had triazoles in concentrations of 0.10–803.30 μg/kg, and 29.77% of samples contained a combination of 2–7 triazoles. Tebuconazole and difenoconazole were the most commonly found triazoles in the foods, being detected in 33.44% and 30.45% of samples, respectively. Chronic and acute cumulative risk assessment for total triazoles based on a relative potency factor method revealed that exposure to triazoles from these particular commodities was below the levels that might pose a health risk (chronic hazard index range, 5.90×10⁻⁷ to 1.83×10⁻³; acute hazard index range, 7.77×10⁻⁵ to 0.39, below 1). Notably, dietary exposure risk for children was greater than that for the general population—particularly for the acute intake of mandarin, grape, and cucumber (acute hazard index values of 0.35–0.39). Despite the low health risk, the potential hazards of exposure to triazoles should raise public concern owing to their ubiquitous presence in common foods and potential cumulative effects.
Afficher plus [+] Moins [-]Birds feeding on tebuconazole treated seeds have reduced breeding output Texte intégral
2021
Lopez-Antia, Ana | Ortiz-Santaliestra, Manuel E. | Mougeot, François | Camarero, Pablo R. | Mateo, Rafael
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Afficher plus [+] Moins [-]