Affiner votre recherche
Résultats 1-10 de 44
Degradation of common polymers in sewage sludge purification process developed for microplastic analysis
2021
Lessa Belone, Maria Clara | Kokko, Marika | Sarlin, Essi
To enable and/or facilitate analysis of microplastics from environmental samples, a purification process is required to reduce the organic matter content. The development of such process has as one main concern, besides achieving efficient organic matter reduction, the preservation of the microplastics. In this study, a three-step method for sewage sludge purification was proposed employing sodium dodecyl sulfate and hydrogen peroxide. The effects of the purification method on seven polymers (LLDPE, HDPE, PP, PS, PET, PA66 and SBR) were evaluated in terms of mass change, surface characteristics, mechanical properties, thermal properties and functional groups change. It was also assessed how the polymers were affected by the purification chemicals without the presence of sewage sludge. The purification process led to changes in all tested plastics, but in different intensities. LLDPE, HDPE, PP, PS and PET did not suffer considerable degradation. PET was more affected by hydrolysis than oxidation. On the other hand, the integrities of PA66 and SBR were noticeably affected. The effects of the purification process were considered to be due to the plasticizer behavior of water and oxidation on PA66 and loss of filler and oxidation on SBR. For both polymers there was a reduction on the tensile strength of around 50–60% after the purification, indicating they could be prone to fragmentate into smaller pieces along the process. After purification, PA66 also started to decompose at a temperature around 10 °C lower comparing to virgin samples. Except for SBR, the presence of sewage sludge and its oxidation was more harmful to the polymers than the purification chemicals without the presence of sewage sludge. This study serves as an evaluation of the effects of the purification process on the degradation of microplastics and a methodology for such assessment when designing a purification process.
Afficher plus [+] Moins [-]Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river
2021
Kameda, Yutaka | Yamada, Naofumi | Fujita, Emiko
There is increasing concern about the environmental behaviors of microplastics (MPs), in particular fine MPs (FMPs), such as their concentrations, sources, size distributions, and fragmentation by weathering in waters. However, there is little information about size distributions of MP polymer types and their relationships to their sources. Here, we analyzed concentrations, compositions, and size distributions of 18 polymer types of MPs of >20 μm by micro-Fourier transform infrared spectroscopy with a novel pretreatment method in surface waters at five sites from the headwaters to the mouth of a Japanese river, and in influent and effluent from a sewage treatment plant (STP). The microplastic concentrations ranged from 300 to 1240 particles/m³ in surface waters. Cluster analysis identified two primary sources of MPs: residential wastewater at the headwater site and non-point sources from urban areas at downstream sites; concentrations of chemical contaminants from STPs were much higher at the downstream sites. The median particle sizes (D₅₀) of MPs increased in urban areas at the downstream sites and were larger than those in influent and effluent. These results imply the release of larger MPs from non-point sources in urban areas. The size distributions of each polymer and all MPs could be fitted significantly to the Weibull distribution function. Values of D₅₀, shape parameters, and scale parameters estimated from the functions were useful indicators for evaluating size distributions in detail. A significant positive correlation of D₅₀ with the tensile strengths of virgin polymers among 13 dominant polymers detected in the surface water suggests that the fragmentation properties of each polymer are influenced by its physical strength. Multidimensional analysis with concentrations, polymeric compositions, and size distributions of MPs, including FMPs, could provide useful information about their sources and their environmental behaviors.
Afficher plus [+] Moins [-]Bioremediation of polyvinyl chloride (PVC) films by marine bacteria
2021
Khandare, Shrikant D. | Chaudhary, Doongar R. | Jha, Bhavanath
Polyvinyl chloride (PVC) is the third one after polyethylene and polypropylene in the production demand. It intends to grow further, causing an increase in the risk of health and ecological problems due to environmental accumulation and incineration. In the present study, we determined the biodegradative abilities of marine bacteria for PVC. Three potential marine bacterial isolates, T-1.3, BP-4.3 and S-237 (Vibrio, Altermonas and Cobetia, respectively) were identified after preliminary screening. They led to active biofilm formation, viability and protein formation on the PVC surface. The highest weight loss (1.76%) of PVC films was exhibited by BP-4.3 isolate after 60 days of incubation. Remineralization of PVC film was confirmed by CO₂ assimilation assay. Change in surface topography was confirmed by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The functional group peak intensity was decreased for the terminal chlorine group at the region 1000–1300 cm⁻¹, which indicated the dechlorination. Thermogravimetric, tensile strength and contact angle analysis showed a decline in the mechanical properties and a rise in PVC film's hydrophilic nature after biodegradation. These results demonstrated promising evidence of PVC degradation by marine bacteria.
Afficher plus [+] Moins [-]Influence of thermooxidative degradation on the in situ fate of polyethylene in temperate coastal waters
2018
Karlsson, Therese M. | Hassellöv, Martin | Jakubowicz, Ignacy
Polyethylene is a commonly used polymer in plastic products and is often found as marine litter. Nevertheless there is limited knowledge about what happens to the material when it ends up in the sea. Polyethylene films were therefore thermally oxidised to four different levels of degradation. The films were then placed in stainless-steel cages in the sea off the Swedish west coast for 12 summer weeks. Subsamples were analysed with respect to biofouling, degradation and buoyancy. All levels showed a continued oxidation in the field. The pre-degraded films started fragmenting and the non-degraded films showed a decrease in tensile strain. All levels showed increased biofouling with higher presence of filamentous algae and bryozoans on pre-degraded materials. The density (kg·m−3) of the films was seen to increase slightly, and the apparent density for the pre-degraded films (density of the films with biofilm) showed a strong increase, which resulted in sinking.
Afficher plus [+] Moins [-]The fate of conventional and potentially degradable gillnets in a seawater-sediment system
2022
Abandoned gillnets in the marine environment represent a global environmental risk due to the ghost fishing caused by the nets. Degradation of conventional nylon gillnets was compared to that of nets made of polybutylene succinate co-adipate-co-terephthalate (PBSAT) that are designed to degrade more readily in the environment. Gillnet filaments were incubated in microcosms of natural seawater (SW) and marine sediments at 20 °C over a period of 36 months. Tensile strength tests and scanning electron microscopy analyses showed weakening and degradation of the PBSAT filaments over time, while nylon filaments remained unchanged. Pyrolysis-gas chromatography/mass spectrometry revealed potential PBSAT degradation products associated with the filament surfaces, while nylon degradation products were not detected by these analyses. Microbial communities differed significantly between the biofilms on the nylon and PBSAT filaments. The slow deterioration of the PBSAT gillnet filaments shown here may be beneficial and reduce the ghost fishing periods of these gillnets.
Afficher plus [+] Moins [-]Degradation of common polymer ropes in a sublittoral marine environment
2017
Welden, Natalie A. | Cowie, Phillip R.
Contamination by microplastic particles and fibres has been observed in sediment and animals sampled from the Firth of Clyde, West Scotland. In addition to microplastics released during clothes washing, a probable source is polymer ropes in abandoned, lost and discarded fishing and recreational sailing gear. The fragmentation of polypropylene, polyethylene, and nylon exposed to benthic conditions at 10m depth over 12months was monitored using changes in weight and tensile properties. Water temperature and light levels were continuously monitored. The degree of biofouling was measured using chlorophyll a, the weight of attached macroalgae, and colonising fauna. Results indicate microplastic fibres and particles may be formed in benthic environments despite reduced photodegradation. Polypropylene, Nylon, and polyethylene lost an average of 0.39%, 1.02%, and 0.45% of their mass per month respectively. Microscope images of the rope surface revealed notable surface roughening believed to be caused by abrasion by substrate and the action of fouling organisms.
Afficher plus [+] Moins [-]Performance degradation and damage model of rice husk ash concrete under dry–wet cycles of sulfate environment
2022
Yao, Weijing | Bai, Mengyu | Pang, Jianyong | Liu, Tao
Rice husk ash concrete (RHAC) is a new type of concrete that has been rapidly gaining acceptance in recent years. In this paper, the improvement effect of rice husk ash (RHA) on the sulfate erosion performance of concrete was confirmed. The ratio of rice husk ash concrete (RHAC) was optimized and compared with ordinary concrete (OC). The performance degradation of 9%RHAC (rice husk ash at 9% by weight of cement) and OC within 135 times erosion dry–wet cycles solution with Na₂SO₄ at 5% by weight of solution were studied, including the change of apparent phenomena, compressive strength, tensile strength, effective porosity, and dynamic elastic modulus. The microstructure changes of samples before and after sulfate dry–wet cycle were observed by using a scanning electron microscope (SEM). The results show that with the increase of sulfate dry–wet cycle times, the concrete specimen gradually peels off and expands in volume. The compressive strength and tensile strength increase first and then drop sharply, the effective porosity decreases first and then increases, and the relative dynamic elastic modulus increases and then decreases. The reason is that the ettringite and gypsum are formed by the reaction of sulfate intrusion and hydration products under wetting treatment. After drying treatment, ettringite and free water combine to form sodium sulfate. In the early of circulation, ettringite, gypsum, and sodium sulfate fill the internal pores of the concrete and improve the density. As the number of sulfate dry–wet cycles increases, expansion products accumulate, causing structural expansion damage and deterioration of mechanical performance. However, the hydrated calcium silicate hydrate gel was produced by mixing rice husk ash with concrete to improve the material strength and corrosion resistance. The deterioration degree of the 9%RHAC is better than that of OC at all stages. Finally, the damage constitutive models were established, and the accuracy is higher compared with the measured value.
Afficher plus [+] Moins [-]Surface modification of phosphogypsum and application in polyolefin composites
2022
Sun, Min | Sun, Qing | Zhang, Jian | Sheng, Jiawei
Phosphogypsum (PG) is one of solid wastes with large amount of yield and serious pollution, which has attracted wide attention. The aim of this study is to investigate filling performance of PG on polypropylene (PP) or high-density polyethylene (HDPE) matrix. In this work, PG was calcined initially to improve whiteness and fix impurities. X-ray diffraction (XRD) results showed that after calcined at 500 °C, the PG phase changed from CaSO₄·2H₂O to CaSO₄. The modification effects of the three modifiers were evaluated by Fourier transform infrared spectra (FTIR), oil absorption value, water floatability, and contact angle analysis. The effects of weight fraction of PG in PP and HDPE matrix on mechanics and morphology were observed by tensile test, impact test, and scanning electron microscope. Scanning electron microscope (SEM) showed that modified PG can be dispersed uniformly in the matrix at low filling content. With the increase of PG filling content, the analysis of mechanical properties showed that the tensile strength of HDPE matrix increased, while the tensile strength of PP matrix decreased gradually. The impact strength of HDPE matrix would decrease, but the impact strength of PP matrix increased first and then decreased. Compared with calcium carbonate (CC), the mechanical properties of HDPE filled with PG performed better. The apparent density showed that polymer composites filled with PG have the characteristics of light weight.
Afficher plus [+] Moins [-]Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials
2022
Guimarães, Barbara Maria Ribeiro | Scatolino, Mário Vanoli | Martins, Maria Alice | Ferreira, Saulo Rocha | Mendes, Lourival Marin | Lima, José Tarcísio | Junior, Mario Guimarães | Tonoli, Gustavo Henrique Denzin
The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young’s modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.
Afficher plus [+] Moins [-]Fabrication and characterization of electrospun zein/nylon-6 (ZN6) nanofiber membrane for hexavalent chromium removal
2022
Ansari, Sorth | Ahmed, Naveed | Mahar, Rasool Bux | Khatri, Zeeshan | Khatri, Muzamil
Zein has drawn attention for its great potential for biodegradability and adsorption of hexavalent chromium Cr(VI) that is a carcinogenic industrial pollutant. Zein is a biopolymer extracted from corn and is used for many purposes, but because of its poor stability in aqueous solution, a novel composite of zein and nylon-6 was used to synthesize a nanofibrous membrane using electrospinning to improve its stability and tensile strength. The scanning electron microscope (SEM) image of the zein/nylon-6 (ZN6) nanofiber membrane showed a smooth, beadless, and continuous structure of the nanofibers, but the Fourier transform infrared (FTIR) spectrum of pristine and Cr(VI) saturated ZN6 showed that peaks of secondary amide, carbonyl, and hydroxyl functional groups were involved in adsorption. Optimized experimental parameters were obtained with pH 2.0, contact time 60 min, adsorbent dosage 25 mg, and adsorbate concentration 5.0 mg Cr-VI/mL. Experimental results show that the ZN6 nanofibers removed 87% Cr(VI) with an adsorption capacity of 4.73 mg/g at ambient temperature. Also, the Langmuir isotherm fits well, and the adsorption process followed a pseudo-2ⁿᵈ-order kinetics with r² of 0.90 and 0.99 respectively.
Afficher plus [+] Moins [-]