Affiner votre recherche
Résultats 1-10 de 142
Determinants of Environmental Degradation in Thailand: Empirical Evidence from ARDL and Wavelet Coherence Approaches
2021
Adebayo, T. S. | Akinsola, G. D. | Odugbesan, J. A. | Olanrewaju, V. O.
This paper explores long-run and causal effects of financial development, real growth, urbanization, gross capital formation and energy consumption on CO2 emissions in Thailand by utilizing recent econometric techniques. The study employs ARDL technique to examine the long and short run interconnection between CO2 emissions and the regressors. Furthermore, we employ the FMOLS, DOLS and CCR as a robustness check to the ARDL long-run estimator. The study use time-series data spanning from 1971 to 2016. The study also utilizes the wavelet coherence technique to collect information on the association and causal interrelationship among these economic variables at different frequencies and timeframes in Thailand. The study objectives are structured to answer the following questions: (a) does the selected macroeconomic indicators impact CO2 emissions in Thailand? (b) if so, why? Findings reveal; (i) Negative and insignificant link between CO2 emissions and urbanization. (ii) GDP growth affects CO2 emissions positively. (iii) The interconnection between CO2 emissions and energy usage is positive. (iv) Gross capital formation impact CO2 emissions positively. (v) Positive interconnection exists between financial development and CO2 emissions in Thailand. Additionally, the wavelet coherence result provides a supportive evidence for the ARDL long run result. Based on these findings, policy directions were suggested.
Afficher plus [+] Moins [-]Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes
2021
Liu, Jinke | Han, Guilin
The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ³⁴SSO₄ value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.
Afficher plus [+] Moins [-]Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan
2021
Weber, Annika M. | Baxter, Bridget A. | McClung, Anna | Lamb, Molly M. | Becker-Dreps, Sylvia | Vilchez, Samuel | Koita, Ousmane | Wieringa, Frank | Ryan, Elizabeth P.
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg⁻¹) and lowest in Guatemala (0.017 mg kg⁻¹) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Afficher plus [+] Moins [-]Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia
2020
Tang, Jiao | Li, Jun | Mo, Yangzhi | Safaei Khorram, Mahdi | Chen, Yingjun | Tang, Jianhui | Zhang, Yanlin | Song, Jianzhong | Zhang, Gan
Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE₃₆₅), with an average value of 2.6 ± 0.83 m² g⁻¹ C. HULIS emitted from BB accounted for 65% ± 13% of the amount of water-soluble organic carbon (WSOC) and 85% ± 10% of the light absorption of WSOC at 365 nm. The EFs of HULIS from BB averaged 2.3 ± 2.1 g kg⁻¹ fuel, and the burning of the four vegetation subtypes (herbaceous plants, shrubs, evergreen trees, and deciduous trees) exhibited different characteristics. The differences in EFs among the subtypes were likely due to differences in lignin content in the vegetation, the burning conditions, or other factors. The light absorption characteristics of HULIS were strongly associated with the EFs. The annual emissions (minimum–maximum) of HULIS from BB in this region in 2016 were 200–371 Gg. Furthermore, the emissions from January to April accounted for 99% of the total annual emissions of HULIS, which is likely the result of the burning activities during this season. The most significant emission regions were Cambodia, Burma, Thailand, and Laos. This study, which evaluated emissions of HULIS by simulating open BB, contributes to a better understanding of the light-absorbing properties and regional budgets of BrC in this region.
Afficher plus [+] Moins [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
Afficher plus [+] Moins [-]Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects
2020
Phairuang, Worradorn | Inerb, Muanfun | Furuuchi, Masami | Hata, Mitsuhiko | Tekasakul, Surajit | Phīraphong Thīkhasakun,
In this study, size-fractionated particulate matters (PM) down to ultrafine (PM₀.₁) particles were collected using a cascade air sampler with a PM₀.₁ stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM₂.₅₋₁₀ being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM₀.₅₋₁.₀ fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM₀.₅₋₁.₀ and PM₁.₀₋₂.₅) and coarse (PM₂.₅₋₁₀ and PM>₁₀) fractions. The OC fraction in PM₀.₁ was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R² = 0.824–0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R² = 0.093–0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.
Afficher plus [+] Moins [-]Phosphorus leakage from fisheries sector – A case study in Thailand
2016
Prathumchai, Nuchnapa | Polprasert, Chongchin | Englande, A. J.
Although phosphorus (P) is an essential element needed for all lives, excess P can be harmful to the environment. The objective of this study aims to determine P flows in the fisheries sector of Thailand consisting of both sea and freshwater activities of captures and cultures. Currently, the annual fisheries catch averages 3.44 ± 0.50 Mt. Most comes from marine capture 1.95 ± 0.46 Mt, followed by coastal aquaculture 0.78 ± 0.09 Mt, freshwater aquaculture 0.49 ± 0.05 Mt, and inland capture 0.22 ± 0.01 Mt. Of this total, about 11% is contained in fresh products directly sold in local markets for consumption, while 89% is sent to processing factories prior to being sold in local markets and exported. The quantities of P entering the fisheries sector come from captures, import of fisheries products and feed produced from agriculture. This P input to the fisheries sector is found to average 28,506 t P.y−1 based on the past ten-year records. Of this total, P input from captures accounts for 76%; while, 11% represents aquatic feeds from agriculture and animal manures. About 13% is obtained from the imports of fishery products. Coastal and freshwater aquacultures are found to be P consumers because their feeds are almost all produced from agricultural crops grown inland. Moreover, these activities cause most of P losses, approximately 10,188 t P·y−1, which account for 89% of the total P loss from the fisheries sector. Overall, P in the fisheries sector is found to mobilize through three channels: (a) 44% is consumed within the country; (b) about 16% is exported; and, (c) 40% is lost from the ecosystem. Based on the results of this work it is recommended that future research be directed on ways to minimize P loss and maximize P recycle in Thailand's fisheries sector as to enhance its food security and curtail water pollution.
Afficher plus [+] Moins [-]Pesticide transport simulation in a tropical catchment by SWAT
2014
Bannwarth, M.A. | Sangchan, W. | Hugenschmidt, C. | Lamers, M. | Ingwersen, J. | Ziegler, A.D. | Streck, T.
The application of agrochemicals in Southeast Asia is increasing in rate, variety and toxicity with alarming speed. Understanding the behavior of these different contaminants within the environment require comprehensive monitoring programs as well as accurate simulations with hydrological models. We used the SWAT hydrological model to simulate the fate of three different pesticides, one of each usage type (herbicide, fungicide and insecticide) in a mountainous catchment in Northern Thailand. Three key parameters were identified: the sorption coefficient, the decay coefficient and the coefficient controlling pesticide percolation. We yielded satisfactory results simulating pesticide load dynamics during the calibration period (NSE: 0.92–0.67); the results during the validation period were also acceptable (NSE: 0.61–0.28). The results of this study are an important step in understanding the modeling behavior of these pesticides in SWAT and will help to identify thresholds of worst-case scenarios in order to assess the risk for the environment.
Afficher plus [+] Moins [-]Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand
2014
Rico, Andreu | Oliveira, Rhaul | McDonough, Sakchai | Matser, Arrienne | Khatikarn, Jidapa | Satapornvanit, Kriengkrai | Nogueira, António J.A. | Soares, Amadeu M.V.M. | Domingues, Inês | Van den Brink, Paul J.
The use, environmental fate and ecological risks of antibiotics applied in tilapia cage farming were investigated in the Tha Chin and Mun rivers in Thailand. Information on antibiotic use was collected through interviewing 29 farmers, and the concentrations of the most commonly used antibiotics, oxytetracycline (OTC) and enrofloxacin (ENR), were monitored in river water and sediment samples. Moreover, we assessed the toxicity of OTC and ENR on tropical freshwater invertebrates and performed a risk assessment for aquatic ecosystems. All interviewed tilapia farmers reported to routinely use antibiotics. Peak water concentrations for OTC and ENR were 49 and 1.6 μg/L, respectively. Antibiotics were most frequently detected in sediments with concentrations up to 6908 μg/kg d.w. for OTC, and 2339 μg/kg d.w. for ENR. The results of this study indicate insignificant short-term risks for primary producers and invertebrates, but suggest that the studied aquaculture farms constitute an important source of antibiotic pollution.
Afficher plus [+] Moins [-]Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation
2022
Na-Phatthalung, Warangkana | Keaonaborn, Dararat | Jaichuedee, Juthamas | Keawchouy, Suthiwan | Sinyoung, Suthatip | Musikavong, Charongpun
Silver nanoparticles (AgNPs) are used in many industries for multiple applications that inevitably release AgNPs into surface water sources. The formation kinetics of disinfection by-products (DBPs) in the presence of AgNPs was investigated during chlorination. Experiments were carried out with raw water from a canal in Songkhla, Thailand, which analyzed the formation potential (FP) of trihalomethanes FP (THMFP), iodo-trihalomethanes FP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP. Increased AgNP concentrations by 10–20 mg/L led to a higher specific formation rate of chloroform which is described by zero- and first-order kinetics. The increase in the specific formation of chloroform as increasing chlorine contact time could enhance both the THMFP rates and the maximum THMFP concentrations in all tested AgNPs. The AgNP content did not have a significant influence on I-THMFP and HANFP concentrations or speciation. The I-THMFP and HANFP increased in a short-chlorination time as mostly complete formation <12 h, and then the rate decreased as the reaction proceeded. The levels of THMs and many emerging DBPs are related to the presence of AgNPs in chlorinated water and chlorine reaction time. THMFP had a higher impact on integrated toxic risk value (ITRV) than I-THMFP and HANFP because of the chlorination of water with AgNPs. The chlorine reaction time was more effective for increasing the ITRV of THMFP than the level of AgNPs. Water treatment plants should control the DBPs that cause possible health risks from water consumption by optimizing water distribution time.
Afficher plus [+] Moins [-]