Affiner votre recherche
Résultats 1-10 de 74
Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, Andre | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, Luc | Departamento de Biologia ; Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP) | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Biostatistique et Processus Spatiaux (BioSP) ; Institut National de la Recherche Agronomique (INRA) | Universidade Federal de Lavras = Federal University of Lavras (UFLA) | Universidade Federal de São Carlos [São Carlos] (UFSCar) | Laboratoire de l'Environnement et de l'Alimentation de la Vendée ; Institut National de la Recherche Agronomique (INRA) | Sao Paulo Research Foundation 2013/21634-8 2012/50197-2
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/µL, 0.001 ng/µL and 1.44 ng/µL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages ofthe honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Afficher plus [+] Moins [-]β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Afficher plus [+] Moins [-]Combined toxicity assessment of myclobutanil and thiamethoxam to zebrafish embryos employing multi-endpoints
2021
Shen, Weifeng | Yang, Guiling | Guo, Qi | Lv, Lu | Liu, Li | Wang, Xinquan | Lou, Bao | Wang, Qiang | Wang, Yanhua
It is necessary to understand the interactions between different pesticides in ecotoxicology because pesticides never appear as individual compounds but rather in combinations with other compounds. In this study, we planned to explicate the combined toxic effect of myclobutanil (MYC) and thiamethoxam (THI) on the zebrafish (Danio rerio) by adopting multiple biomarkers. Results unraveled that the 96-h LC₅₀ values of MYC to D. rerio at various life phases ranged from 5.2 to 10.3 mg L⁻¹, which were lower than those of THI ranging from 147 to 246 mg L⁻¹. Combinations of MYC and THI exhibited synergetic toxicity to zebrafish embryos. The activities of antioxidative enzymes (T-SOD, Cu/Zn-SOD and POD) and detoxification enzyme (GST) were obviously varied in most of the MYC, THI and combined exposures compared to the control. The mRNA expressions of eight genes (Cu-sod, cas3, il-8, cxcl, erα, crh, cyp17 and dio1) involved in antioxidation, apoptosis, immunity and endocrine were obviously altered in the combined exposure of MYC and THI compared to their individual exposures. Our findings hinted the threats when YMC and THI co-existed, which would be beneficial for the risk assessments of pesticide mixtures.
Afficher plus [+] Moins [-]The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta
2021
Strobl, Verena | Albrecht, Matthias | Villamar-Bouza, Laura | Tosi, Simone | Neumann, Peter | Straub, Lars
The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g⁻¹) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.
Afficher plus [+] Moins [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Afficher plus [+] Moins [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Afficher plus [+] Moins [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Afficher plus [+] Moins [-]Population-level variation in neonicotinoid tolerance in nymphs of the Heptageniidae
2020
Rackliffe, D Riley | Hoverman, Jason T.
Anthropogenic activities can have significant ecological and evolutionary consequences on populations and communities. In the United States, neonicotinoid insecticides are widespread across the agricultural Midwest and frequently detected in stream systems. Their effect on Heptageniidae mayflies is a major concern because they are highly sensitive to neonicotinoids and have some of the lowest reported tolerance values of any organism. Our objective was to evaluate population-level variation in neonicotinoid sensitivity. We did so by conducting 96 h half maximal effective concentration (EC50₉₆₋ₕ) tests for the neonicotinoids clothianidin and thiamethoxam on populations of Stenacron, Stenonema, and Maccaffertium mayflies and testing for associations with agricultural landcover. Additionally, we collected water samples to assess temporal patterns of neonicotinoid presence in stream habitats. We found variation in neonicotinoid tolerance with EC50 values ranging from 4.9 μg/L to 32 μg/L and 19.8 μg/L to 86.5 μg/L for clothianidin and thiamethoxam, respectively. Agricultural landcover was associated with neonicotinoid tolerance for Stenacron and thiamethoxam but not for other comparisons. Moreover, water samples demonstrated that the amount of agricultural landcover was not a strong predictor of neonicotinoids presence in streams. Our data suggest that populations of Heptageniidae mayflies can vary substantially in neonicotinoid tolerance. Population-level variation should be considered in toxicity assessments and presents the potential for evolved tolerance.
Afficher plus [+] Moins [-]Temporal variation analysis and risk assessment of neonicotinoid residues from tea in China
2020
Li, Shaohua | Ren, Jun | Li, Lifeng | Chen, Rongbing | Li, Jingguang | Zhao, Yunfeng | Chen, Dawei | Wu, Yongning
The extensive use of neonicotinoids (NEOs) has caused the release of wide-ranging of residues to the environment and food, and their potential health risks are now receiving more attention. In this study, three surveys were conducted to obtain the overall profiles of NEO residue levels (seven NEOs and one metabolite) in Chinese tea over a period of seven years. A total of 726 tea samples were tested, and nearly 87% of the samples were found to have detectable NEO residues. The overall average detection frequency of acetamiprid was the highest, reaching 73%. Imidacloprid residues in 4.6% of the samples exceeded the Chinese maximum residue limits, whereas clothianidin and nitenpyram had been detected in Chinese tea samples since 2014. The applications of thiacloprid and thiamethoxam gradually increased, and some tea samples with high residue levels appeared in China. These findings signal the replacement of new and old varieties of NEOs in China. Both long- and short-term cumulative exposures to NEOs were calculated based on optimistic and pessimistic models recommended in the EFSA guidelines. In the three survey periods, the average total imidacloprid-equivalent concentrations were 484.63, 1713.36, and 1148.34 μg/kg, respectively. Combined with the refined point estimates and probabilistic models used in this study, the hazard quotients of NEO residues in tea for Chinese tea consumers were found to be low and within the bounds of safety.
Afficher plus [+] Moins [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
Afficher plus [+] Moins [-]