Affiner votre recherche
Résultats 1-10 de 75
Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, Andre | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, Luc | Departamento de Biologia ; Universidade Estadual Paulista Júlio de Mesquita Filho = São Paulo State University (UNESP) | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Biostatistique et Processus Spatiaux (BioSP) ; Institut National de la Recherche Agronomique (INRA) | Universidade Federal de Lavras = Federal University of Lavras (UFLA) | Universidade Federal de São Carlos [São Carlos] (UFSCar) | Laboratoire de l'Environnement et de l'Alimentation de la Vendée ; Institut National de la Recherche Agronomique (INRA) | Sao Paulo Research Foundation 2013/21634-8 2012/50197-2
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/µL, 0.001 ng/µL and 1.44 ng/µL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages ofthe honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Afficher plus [+] Moins [-]Peripheral neuropathy, protein aggregation and serotonergic neurotransmission: Distinctive bio-interactions of thiacloprid and thiamethoxam in the nematode Caenorhabditis elegans
2022
Scharpf, Inge | Cichocka, Sylwia | Le, Dang Tri | von Mikecz, Anna
Due to worldwide production, sales and application, neonicotinoids dominate the global use of insecticides. While, neonicotinoids are considered as pinpoint neurotoxicants that impair cholinergic neurotransmission in pest insects, the sublethal effects on nontarget organisms and other neurotransmitters remain poorly understood. Thus, we investigated long-term neurological outcomes in the decomposer nematode Caenorhabditis elegans. In the adult roundworm the neonicotinoid thiacloprid impaired serotonergic and dopaminergic neuromuscular behaviors, while respective exposures to thiamethoxam showed no effects. Thiacloprid caused a concentration-dependent delay of the transition between swimming and crawling locomotion that is controlled by dopaminergic and serotonergic neurotransmission. Age-resolved analyses revealed that impairment of locomotion occurred in young as well as middle-aged worms. Treatment with exogenous serotonin rescued thiacloprid-induced swimming deficits in young worms, whereas additional exposure with silica nanoparticles enhanced the reduction of swimming behavior. Delay of forward locomotion was partly caused by a new paralysis pattern that identified thiacloprid as an agent promoting a specific rigidity of posterior body wall muscle cells and peripheral neuropathy in the nematode (lowest-observed-effect-level 10 ng/ml). On the molecular level exposure with thiacloprid accelerated protein aggregation in body wall muscle cells of polyglutamine disease reporter worms indicating proteotoxic stress. The results from the soil nematode Caenorhabditis elegans show that assessment of neurotoxicity by neonicotinoids requires acknowledgment and deeper research into dopaminergic and serotonergic neurochemistry of nontarget organisms. Likewise, it has to be considered more that different neonicotinoids may promote diverse neural end points.
Afficher plus [+] Moins [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Afficher plus [+] Moins [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Afficher plus [+] Moins [-]Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam
2021
Pesticides may alter soil microbial community structure or diversity, but their impact on microbial co-occurrence patterns remains unclear. Here, the effect of the widely used neonicotinoid insecticide thiamethoxam on the bacterial community in five arable soils was deciphered using the 16S rRNA gene amplicon sequencing technique. The degradation half-life of thiamethoxam in nonsterilized soils was significantly lower than that in sterilized soils, suggesting a considerable contribution from biodegradation. Soil bacterial community diversity diminished in high concentration thiamethoxam treatment and its impact varied with treatment concentration and soil type. Bacterial co-occurrence network complexity significantly decreased after exposure to thiamethoxam. Under thiamethoxam stress, the relative changes in bacterial co-occurrence networks were closely related (the majority of p-values < 0.05) to the soil physicochemical properties, yet the diversity and dominant phyla were slightly related (the majority of p-values > 0.05). Additionally, three bacterial genera, Sphingomonas, Streptomyces, and Catenulispora, were identified to be relevant to the degradation of thiamethoxam in soils. This finding deciphers the succession of the bacterial community under thiamethoxam stress across multiple soils, and emphasizes the potential role of physicochemical properties in regulating the ecotoxicological effect of pesticides on the soil microbiome.
Afficher plus [+] Moins [-]The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta
2021
Strobl, Verena | Albrecht, Matthias | Villamar-Bouza, Laura | Tosi, Simone | Neumann, Peter | Straub, Lars
The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g⁻¹) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.
Afficher plus [+] Moins [-]Neonicotinoids from coated seeds toxic for honeydew-feeding biological control agents
2021
Calvo-Agudo, Miguel | Dregni, Jonathan | González-Cabrera, Joel | Dicke, Marcel | Heimpel, George E. | Tena, Alejandro
Seed coating (‘seed treatment’) is the leading delivery method of neonicotinoid insecticides in major crops such as soybean, wheat, cotton and maize. However, this prophylactic use of neonicotinoids is widely discussed from the standpoint of environmental costs. Growing soybean plants from neonicotinoid-coated seeds in field, we demonstrate that soybean aphids (Aphis glycines) survived the treatment, and excreted honeydew containing neonicotinoids. Biochemical analyses demonstrated that honeydew excreted by the soybean aphid contained substantial concentrations of neonicotinoids even one month after sowing of the crop. Consuming this honeydew reduced the longevity of two biological control agents of the soybean aphid, the predatory midge Aphidoletes aphidimyza and the parasitic wasp Aphelinus certus. These results have important environmental and economic implications because honeydew is the main carbohydrate source for many beneficial insects in agricultural landscapes.
Afficher plus [+] Moins [-]Concentrations and distributions of neonicotinoids in drinking water treatment plants in South Korea
2021
Kim, Jiwon | Wang, Wenting | Lee, Soohyung | Park, Ju-Hyun | Oh, Jeong-Eun
We investigated the fates of seven neonicotinoids (NNIs) in full-scale drinking water treatment plants and assessed human exposure to NNIs through consuming drinking water. The total NNI concentrations in raw water and treated water samples from the drinking water treatment plants were 20.4–166 ng/L (median 118 ng/L) and 1.11–94.7 ng/L (median 20.4 ng/L), respectively. The dinotefuran (DIN) concentrations in raw water collected in different seasons were different, and the highest DIN concentration was found in summer. The drinking water treatment processes removed >91% of the NNIs except DIN and thiamethoxam (THIAM), for which the mean removal rates were 70% and 74%, respectively. The removal rates for all of the NNIs were higher for the granular activated carbon filtration process (mean 83.5%) than the other drinking water treatment plant processes (coagulation/sedimentation 22.3%, ozonation 29.2%). However, the removal rates in the granular activated carbon process were lower for DIN and THIAM (61.0% and 59.2%, respectively) than the other NNIs. Significant correlations were found between the NNI removal rates and physicochemical properties (solubility in water and log (octanol–water partition coefficient)). The estimated mean human exposure to NNIs in drinking water was 0.528 ng/(kg body weight d).
Afficher plus [+] Moins [-]Uptake and dissipation of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam in greenhouse chrysanthemum
2020
Gong, Wenwen | Jiang, Mengyun | Zhang, Tingting | Zhang, Wei | Liang, Gang | Li, Bingru | Hu, Bin | Han, Ping
Production of chrysanthemum (Dendranthema grandiflora) in greenhouses often requires intensive pesticide use, which raises serious concerns over food safety and human health. This study investigated uptake, translocation and residue dissipation of typical fungicides (metalaxyl-M and fludioxonil) and insecticides (cyantraniliprole and thiamethoxam) in greenhouse chrysanthemum when applied in soils. Chrysanthemum plants could absorb these pesticides from soils via roots to various degrees, and bioconcentration factors (BCFLS) were positively correlated with lipophilicity (log Kₒw) of pesticides. Highly lipophilic fludioxonil (log Kₒw = 4.12) had the greatest BCFLS (2.96 ± 0.41 g g⁻¹), whereas hydrophilic thiamethoxam (log Kₒw = −0.13) had the lowest (0.09 ± 0.03 g g⁻¹). Translocation factors (TF) from roots to shoots followed the order of TFₗₑₐf > TFₛₜₑₘ > TFfₗₒwₑᵣ. Metalaxyl-M and cyantraniliprole with medium lipophilicity (log Kₒw of 1.71 and 2.02, respectively) and hydrophilic thiamethoxam showed relatively strong translocation potentials with TF values in the range of 0.29–0.81, 0.36–2.74 and 0.30–1.03, respectively. Dissipation kinetics in chrysanthemum flowers followed the first-order with a half-life of 21.7, 5.5, 10.0 or 8.2 days for metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam, respectively. Final residues of these four pesticides, including clothianidin (a primary toxic metabolite of thiamethoxam), in all chrysanthemum flower samples were below the maximum residue limit (MRL) values 21 days after two soil applications each at the recommended dose (i.e., 3.2, 2.1, 4.3 and 4.3 kg ha⁻¹, respectively). However, when doubling the recommended dose, the metabolite clothianidin remained at concentrations greater than the MRL, despite that thiamethoxam concentration was lower than the MRL value. This study provided valuable insights on the uptake and residues of metalaxyl-M, fludioxonil, cyantraniliprole and thiamethoxam (including its metabolite clothianidin) in greenhouse chrysanthemum production, and could help better assess food safety risks of chrysanthemum contamination by parent pesticides and their metabolites.
Afficher plus [+] Moins [-]Temporal variation analysis and risk assessment of neonicotinoid residues from tea in China
2020
Li, Shaohua | Ren, Jun | Li, Lifeng | Chen, Rongbing | Li, Jingguang | Zhao, Yunfeng | Chen, Dawei | Wu, Yongning
The extensive use of neonicotinoids (NEOs) has caused the release of wide-ranging of residues to the environment and food, and their potential health risks are now receiving more attention. In this study, three surveys were conducted to obtain the overall profiles of NEO residue levels (seven NEOs and one metabolite) in Chinese tea over a period of seven years. A total of 726 tea samples were tested, and nearly 87% of the samples were found to have detectable NEO residues. The overall average detection frequency of acetamiprid was the highest, reaching 73%. Imidacloprid residues in 4.6% of the samples exceeded the Chinese maximum residue limits, whereas clothianidin and nitenpyram had been detected in Chinese tea samples since 2014. The applications of thiacloprid and thiamethoxam gradually increased, and some tea samples with high residue levels appeared in China. These findings signal the replacement of new and old varieties of NEOs in China. Both long- and short-term cumulative exposures to NEOs were calculated based on optimistic and pessimistic models recommended in the EFSA guidelines. In the three survey periods, the average total imidacloprid-equivalent concentrations were 484.63, 1713.36, and 1148.34 μg/kg, respectively. Combined with the refined point estimates and probabilistic models used in this study, the hazard quotients of NEO residues in tea for Chinese tea consumers were found to be low and within the bounds of safety.
Afficher plus [+] Moins [-]