Affiner votre recherche
Résultats 1-10 de 26
Allocation of glycerolipids and glycerophospholipids from adults to eggs in Daphnia magna: Perturbations by compounds that enhance lipid droplet accumulation Texte intégral
2018
Fuertes, Inmaculada | Jordão, Rita | Casas, Josefina | Barata, Carlos
Analysis of the disruptive effects of chemicals on lipids in invertebrates is limited by our poor knowledge of the lipid metabolic pathways and the complete lipidome. Recent studies shown that juvenoids and bisphenol A disrupted the dynamics of lipid droplets in the crustacean Daphnia magna. This study used ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) to study how juvenoids (pyriproxyfen and methyl farnesoate) and bisphenol A disrupt the dynamics of glycerophospholipids and glycerolipids in Daphnia adults and their allocation to eggs. Lipidomic analysis identified 234 individual lipids corresponding to three classes of glycerolipids, seven of glycerophospholipids, and one of sphingolipids, of which 194 changed according to the chemical treatments and time. Adult females in the control and bisphenol A treatment groups had low levels of triacylglycerols but high levels of glycerophospholipids, whereas those in the juvenoid treatment groups had high levels of triacylglycerols and low levels of glycerophospholipids. The opposite trend was observed for the lipid contents in the eggs produced. Because the juvenoids reduced reproduction dramatically, the females allocated less triacylglycerols to their eggs than the controls did. Interestingly, females exposed to bisphenol A allocated less triacylglycerols to their eggs despite producing a similar number of eggs as that of the controls. Thin-layer chromatography analyses confirmed the UHPLC/TOFMS results and allowed qualitative determination of cholesterol, which was also accumulated in females exposed to the juvenoids.
Afficher plus [+] Moins [-]Long-term weathering and continued oxidation of oil residues from the Deepwater Horizon spill Texte intégral
2016
White, Helen K. | Wang, Chloe H. | Williams, Patrick L. | Findley, David M. | Thurston, Alana M. | Simister, Rachel L. | Aeppli, Christoph | Nelson, Robert K. | Reddy, Christopher M.
To investigate the long-term weathering of oil from the Deepwater Horizon (DWH) incident, oil-soaked sand patties were collected from Gulf of Mexico beaches from Florida to Alabama over a three-year period from 2012 to 2014. Analysis of oil residues by gas chromatography with flame ionization detection (GC-FID), thin-layer chromatography with flame ionization detection (TLC-FID), and Fourier transform infrared spectroscopy (FT-IR) indicated uniformity in their chemical composition. Some variability within and between samples was observed, arising from differences in exposure to light and water, which increase the amount of weathering. Oxygenated hydrocarbons (OxHC) produced by weathering processes dominate the majority of oil residues. These OxHC have continued recalcitrance in the environment, and increase in relative abundance over time. Analyses of the bulk characteristics of oil residues via TLC-FID and FT-IR should be continued as these techniques provide important insight into the weathering state of oil residues.
Afficher plus [+] Moins [-]Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds Texte intégral
2013
(Emilio),
A total of 69 bacteria were isolated from crude oil enrichments of the polychaetes Megalomma claparedei, Sabella spallanzanii and Branchiomma luctuosum, and screened for biosurfactant (BS) production by conventional methods. Potential BS-producers (30 isolates) were primarily selected due to the production of both interesting spots on thin layer chromatography (TLC) plates and highly stable emulsions (E24⩾50%). Only few strains grew on cetyltrimethylammonium bromide and blood agar plates, indicating the probable production of anionic surfactants. The 16S rRNA gene sequencing revealed that selected isolates mainly belonged to the CFB group of Bacteroidetes, followed by Gammaproteobacteria and Alphaproteobacteria.A number of BS-producers belonged to genera (i.e., Cellulophaga, Cobetia, Cohaesibacter, Idiomarina, Pseudovibrio and Thalassospira) that have been never reported as able to produce BSs, even if they have been previously detected in hydrocarbon-enriched samples. Our results suggest that filter-feeding Polychaetes could represent a novel and yet unexplored source of biosurfactant-producing bacteria.
Afficher plus [+] Moins [-]Chemical characterization of natural and anthropogenic-derived oil residues on Gulf of Mexico beaches Texte intégral
2018
Morrison, Alexandra E. | Dhoonmoon, Charvanaa | White, Helen K.
Oil residues originating from the Deepwater Horizon (DWH) incident persist on Gulf of Mexico beaches alongside oil from offshore industrial activity, natural seepage, and asphalt from parking lots and roads. To determine the primary differences in the chemical composition of these oil residues, a variety of samples were collected from beaches from Florida to Alabama over a two-year period from 2015 to 2017. Bulk chemical characteristics of the oil residues were examined via gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC–MS), as well as thin layer chromatography with flame ionization detection (TLC-FID), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR). These bulk chemical analyses revealed features unique to the different sample types, expanding our understanding of the chemical composition and variability of persistent oil residues, and providing a means to detect and monitor their long-term fate in the coastal environment.
Afficher plus [+] Moins [-]Production, characterization, evaluation and toxicity assessment of a Bacillus cereus UCP 1615 biosurfactant for marine oil spills bioremediation Texte intégral
2020
Durval, Italo José B. | Mendonça, Ana Helena R. | Rocha, Igor V. | Luna, Juliana M. | Rufino, Raquel D. | Converti, A. | Sarubbo, L.A.
In this study, Bacillus cereus was cultivated in a mineral medium composed of 2% frying oil and 0.12% peptone to produce a biosurfactant. The production was scaled up from flasks to 1.2-, 3.0- and 50-L bioreactors, where surface tension achieved 28.7, 27.5 and 32 mN/m and biosurfactant concentration 4.3, 4.6 and 4.7 g/L, respectively. The biosurfactant was characterized as anionic, while nuclear magnetic resonance, thin-layer chromatography and gas chromatography analyses revealed its lipopeptide nature. Toxicity tests showed survival rates of the fish Poecilia vivipara and the bivalve Anomalocardia brasiliana higher than 90% and 55%, respectively, thus suggesting the use of this biosurfactant in marine environment depollution. Moreover, the biosurfactant stimulated the growth of autochthonous microorganisms independently of the presence of motor oil in bioassays performed in seawater. These results demonstrate that the biosurfactant is biocompatible and has potential for industrial-scale production and application to bioremediation of oil spills-polluted marine environment.
Afficher plus [+] Moins [-]Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments Texte intégral
2016
Jia, Hui | Lu, Haoliang | Dai, Minyue | Hong, Hualong | Liu, Jingchun | Yan, Chongling
The effect of root exudates on the environmental behaviors of phenanthrene in mangrove sediments is poorly understood. In order to evaluate their influence, comprehensive laboratory experiments were performed using batch equilibrium and thin-layer chromatography (TLC) analyses. In the presence of root exudates, sorption of phenanthrene was inhibited, whereas desorption and mobility were promoted, and were elevated as root exudate concentrations increased. Among the three representative low molecular weight organic acids (LMWOAs) (citric, oxalic, and acetic acids), citric acid promoted desorption and mobility of phenanthrene more effectively than the other two. In addition, application of artificial root exudates (AREs) enhanced phenanthrene desorption, and mobility was always lower than that with the same concentration of LMWOAs, suggesting that LMWOAs predominantly affected the fate of phenanthrene in sediments. The results of this study could enhance our understanding of the mobility of persistent organic pollutants in sediment–water system.
Afficher plus [+] Moins [-]Isolation, characterization and in vitro antioxidant activity screening of pure compound from black pepper (Piper nigrum) Texte intégral
2022
Mollik, Murshida | Md. Habibur Rahman, | Al-Shaeri, Majed | Ashraf, Ghulam Md | Alexiou, Athanasios | Gafur, Md Abdul
The present study’s aims of isolation, characterization and in vitro antioxidant activity screening of pure compound from Black pepper (Piper nigrum) were investigated. Nowadays, scientific exploration of medicinal plants from natural sources has become the prime concern globally. All the crude drugs that have been isolated from natural plant origin (herbs, root, stem, bark, fruit and flower) have great significance in drug discovery as well as a lead compound to demonstrate great synergistic effect on pharmacology. For this research work, methanol was selected as a mother solvent, and the crude methanolic extract of black pepper was partitioned in between the solvent chloroform and di-ethyl-ether. A crystal fraction has been eradicated from the chloroform extract of black pepper (Piper nigrum). The crystal compound (C₁) was isolated and purified by using thin layer chromatography (TLC) and recrystallization technique. The purified crystal compound (C₁) isolated from black pepper possesses a strong in vitro antioxidant activity. The IC₅₀ value of crystal compound (C₁) was 4.1 µg/ml where the standard one had 3.2 µg/ml. Physical, phytochemical and chromatographical characterization of pure crystal compound (C₁) has been explored, and from the analysis of all characteristics, it was found that, crystal compound (C₁) might have resembling features of the standard Piperine of black pepper. The overall research work was really remarkable and introduced a convenient way of isolating pure compound from the natural source which will be a great referential resource in isolating crude drugs for future analysis.
Afficher plus [+] Moins [-]Biodegradation and Bioaccumulation of Decachlorobiphenyl (DCB) by Native Strain Pseudomonas extremaustralis ADA-5 Texte intégral
2021
López, Miguel Angel Gómez | Zenteno-Rojas, Adalberto | Martinez-Romero, Esperanza | Rincón-Molina, Clara Ivette | Vences-Guzmán, Miguel Angel | Ruíz-Valdiviezo, Víctor Manuel | Rincón-Molina, Francisco Alexander | Manzano-Gomez, Luis Alberto | Rincón-Rosales, Reiner
Decachlorobiphenyl (DCB) is one of the 209 polychlorinated biphenyls congeners characterized by its high toxicity and chemical stability. It is produced by industrial activities. A possible strategy to eliminate DCB is by bacterial degradation. The main objective of this study was to define the optimal conditions for biodegradation and bioaccumulation of DCB by Pseudomonas extremaustralis ADA-5 isolated from a worm intestine. Bacterial growth kinetics were determined in minimal medium with added biphenyl and DCB. By GC coupled to mass spectrometry, we found that the strain had the ability to degrade 9.75% of available DCB, using it as a carbon source and was able to accumulate 19.98% of this pollutant in biomass. Membrane lipids may be altered by DCB. Phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) were identified by thin-layer chromatography as the membrane lipids of the cell. At 250 mg L⁻¹ of DCB in the culture medium, membranes showed a 30% decrease in the PE concentration, an 18% increase in the PG, and a 12% increase in CL. ADA-5 was able to catabolize DCB and may be used for bioremediation of highly chlorinated toxic compounds in soil.
Afficher plus [+] Moins [-]Biosurfactant Production by Marine-Originated Bacteria Bacillus Subtilis and Its Application for Crude Oil Removal Texte intégral
2016
Zhu, Zhiwen | Zhang, Baiyu | Chen, Bing | Cai, Qinghong | Lin, Weiyun
Biosurfactants have been considered as promising candidates for oil spill cleanup as they are generally more biodegradable, less toxic, and better in enhancing biodegradation than chemical surfactants. This study targeted the marine microbial biosurfactants to examine their enhanced production methods and application for the removal of crude oil from soil. The biosurfactants generated by Bacillus subtilis, which was isolated from the Atlantic Ocean, were investigated in this study. The economic production medium using different carbon (n-hexadecane, diesel oil, glycerol, glucose, starch, and sucrose) and nitrogen sources (NaNO₃, (NH₄)₂SO₄, and yeast extract) was studied. The best performance of biosurfactant production was achieved when using glycerol as carbon source and sodium nitrate and yeast extract as nitrogen sources in the substrate. The production rate was enhanced five times compared with that of the original screening recipe. The fermentative production of the generated biosurfactants could reduce the surface tension of water to 27 mN/m and with strong surface activity (∼36.4 mN/m) even after dilution for 10 times. The critical micellar concentration (CMC) of the product was 507 mg/L. A thin layer chromatography (TLC) analysis indicated that the purified product was a mixture of lipopeptide and glycolipid. The microbially produced biosurfactants were further examined as a soil-washing agent to enhance crude oil removal in a soil column system. The removal rates of 58 and 65 % were achieved using the biosurfactant solution with concentrations of 4 and 8 g/L, respectively. The results demonstrated the potential of marine microbial biosurfactants in cleaning crude oil-contaminated soil.
Afficher plus [+] Moins [-]Regulation of Acyl Homoserine Lactone Synthesis in Pseudomonas putida JMQS1 Under Phenol Stress Texte intégral
2016
Antony, Merlin | Jayacandran, Ke.
The cell density-dependent gene expression in gram-negative bacteria is through the activity of acyl homoserine lactone signal molecules. The novel strain Pseudomonas putida JMQS1 isolated from detergent-contaminated soil exhibited quorum sensing along with its ability to degrade phenol. The response to Chromobacterium violaceum DSTS-1 mutant biosensor and luxI and luxR gene-specific amplification was used to characterize the quorum sensing property of the isolate. A regulation in the synthesis of various acyl homoserine lactone molecules, viz C₆HSL in the initial stages of phenol stress, C₈HSL during degradation, and 3OC₁₂HSL on completion of degradation could be identified by liquid chromatography-quadrupole time of flight. Thin-layer chromatography, Fourier transform infrared spectroscopy, and gas chromatography mass spectrometry confirmed the complete degradation of phenol in 48–56 h. P. putida JMQS1 exhibited adaptation over phenol stress through the selective activation of the quorum sensing signal molecules depending on the changing physiological conditions. This study proposes an efficient method for enhancing the degradation of toxic organic pollutants by the supplementation of acyl homoserine lactone signal molecules.
Afficher plus [+] Moins [-]