Affiner votre recherche
Résultats 1-10 de 573
Dysregulation along the gut microbiota-immune system axis after oral exposure to titanium dioxide nanoparticles: A possible environmental factor promoting obesity-related metabolic disorders
2023
Lamas, Bruno | Evariste, Lauris | Houdeau, Eric | Endocrinologie & Toxicologie de la Barrière Intestinale (ToxAlim-ENTeRisk) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Food additives are one major hallmark of ultra-processed food in the Western-diet, a food habit often associated with metabolic disorders. Among these additives, the whitener and opacifying agent titanium dioxide (TiO2) raises public health issues due to the ability of TiO2 nanoparticles (NPs) to cross biological barriers and accumulate in different systemic organs like spleen, liver and pancreas. However before their systemic passage, the biocidal properties of TiO2 NPs may alter the composition and activity of the gut microbiota, which play a crucial role for the development and maintenance of immune functions. Once absorbed, TiO2 NPs may further interact with immune intestinal cells involved in gut microbiota regulation. Since obesity-related metabolic diseases such as diabetes are associated with alterations in the microbiota-immune system axis, this raises questions about the possible involvement of long-term exposure to food-grade TiO2 in the development or worsening of these diseases. The current purpose is to review the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 NPs may increase the susceptibility to develop obesity-related metabolic disorders.
Afficher plus [+] Moins [-]Dysregulation along the gut microbiota-immune system axis after oral exposure to titanium dioxide nanoparticles: A possible environmental factor promoting obesity-related metabolic disorders
2023
Lamas, Bruno | Evariste, Lauris | Houdeau, Eric | Endocrinologie & Toxicologie de la Barrière Intestinale (ToxAlim-ENTeRisk) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Food additives are one major hallmark of ultra-processed food in the Western-diet, a food habit often associated with metabolic disorders. Among these additives, the whitener and opacifying agent titanium dioxide (TiO2) raises public health issues due to the ability of TiO2 nanoparticles (NPs) to cross biological barriers and accumulate in different systemic organs like spleen, liver and pancreas. However before their systemic passage, the biocidal properties of TiO2 NPs may alter the composition and activity of the gut microbiota, which play a crucial role for the development and maintenance of immune functions. Once absorbed, TiO2 NPs may further interact with immune intestinal cells involved in gut microbiota regulation. Since obesity-related metabolic diseases such as diabetes are associated with alterations in the microbiota-immune system axis, this raises questions about the possible involvement of long-term exposure to food-grade TiO2 in the development or worsening of these diseases. The current purpose is to review the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 NPs may increase the susceptibility to develop obesity-related metabolic disorders.
Afficher plus [+] Moins [-]Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
Afficher plus [+] Moins [-]Toxicokinetics and toxicodynamics of plastic and metallic nanoparticles: A comparative study in shrimp
2022
Zhu, Xiaopeng | Teng, Jia | Xu, Elvis Genbo | Zhao, Jianmin | Shan, Encui | Sun, Chaofan | Wang, Qing
Nanoplastic is recognized as an emerging environmental pollutant due to the anticipated ubiquitous distribution, increasing concentration in the ocean, and potential adverse health effects. While our understanding of the ecological impacts of nanoplastics is still limited, we benefit from relatively rich toxicological studies on other nanoparticles such as nano metal oxides. However, the similarity and difference in the toxicokinetic and toxicodynamic aspects of plastic and metallic nanoparticles remain largely unknown. In this study, juvenile Pacific white shrimp Litopenaeus vannamei was exposed to two types of nanoparticles at environmentally relative low and high concentrations, i.e., 100 nm polystyrene nanoplastics (nano-PS) and titanium dioxide nanoparticles (nano-TiO₂) via dietary exposure for 28 days. The systematic toxicological evaluation aimed to quantitatively compare the accumulation, excretion, and toxic effects of nano-PS and nano-TiO₂. Our results demonstrated that both nanoparticles were ingested by L. vannamei with lower egestion of nano-TiO₂ than nano-PS. Both nanoparticles inhibited the growth of shrimps, damaged tissue structures of the intestine and hepatopancreas, disrupted expression of immune-related genes, and induced intestinal microbiota dysbiosis. Nano-PS exposure caused proliferative cells in the intestinal tissue, and the disturbance to the intestinal microbes was also more serious than that of nano-TiO₂. The results indicated that the effect of nano-PS on the intestinal tissue of L. vannamei was more severe than that of nano-TiO₂ with the same particle size. The study provides new theoretical basis of the similarity and differences of their toxicity, and highlights the current lack of knowledge on various aspects of absorption, distribution, metabolism, and excretion (ADME) pathways of nanoplastics.
Afficher plus [+] Moins [-]Enhanced Cd2+ adsorption and toxicity for microbial biofilms in the presence of TiO2 nanoparticles
2022
Wang, Wenwen | Zhu, Shijun | Li, Nihong | Xie, Shanshan | Wen, Chen | Luo, Xia
Titanium dioxide nanoparticles (TiO₂ NPs) easily combine with other pollutants such as heavy metals because of their excellent physiochemical properties. However, how such an interaction may affect the binding behavior of metals onto biofilms remains largely unclear. This study, examined the effects of TiO₂ NPs on Cd²⁺ accumulation and toxicity for natural periphytic biofilms were examined. The adsorption kinetics showed that adding 0.1 and 1 mg/L TiO₂–NPs increased the Cd²⁺ adsorption of biofilms at equilibrium by 23.5% and 35.8%, respectively. However, adding 10 mg/L TiO₂ NPs increased the Cd²⁺ adsorption of biofilms at equilibrium by only 1.9%. The adsorption isotherms indicate that the presence of TiO₂ NPs considerably increased the Cd²⁺ adsorption capacity of the biofilms; however, this effect became less prominent at high TiO₂ NP concentrations. The optimum pH for Cd²⁺ adsorption increased with increasing Cd²⁺ and TiO₂ NP contents. At low concentrations, the coexistence of Cd²⁺ and TiO₂ NPs may facilitate their respective accumulation by stimulating the secretion of extracellular polymeric substances and enhancing the microbial activity of the biofilm. The presence of TiO₂ NPs increases the surface binding energy between Cd²⁺ and functional groups such as carboxyl groups, enhancing the Cd²⁺ accumulation on the biofilm.
Afficher plus [+] Moins [-]Advances in Ultra-Trace Analytical Capability for Micro/Nanoplastics and Water-Soluble Polymers in the Environment: Fresh Falling Urban Snow
2021
Wang, Zi | Saadé, Nadim K. | Ariya, Parisa A.
Discarded micro/nano-plastic inputs into the environment are emerging global concerns. Yet the quantification of micro/nanoplastics in complex environmental matrices is still a major challenge, notably for soluble ones. We herein develop in-laboratory built nanostructures (zinc oxide, titanium oxide and cobalt) coupled to mass spectrometry techniques, for picogram quantification of micro/nanoplastics in water and snow matrices, without sample pre-treatment. In parallel, an ultra-trace quantification method for micro/nanoplastics based on nanostructured laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOF-MS) is developed. The detection limit is ∼5 pg for ambient snow. Soluble polyethylene glycol and insoluble polyethylene fragments were observed and quantified in fresh falling snow in Montreal, Canada. Complementary physicochemical studies of the snow matrices and reference plastics using laser-based particle sizers, inductively coupled plasma tandem mass spectrometry, and high-resolution scanning/transmission electron microscopy, produced consistent results with NALDI, and further provided information on morphology and composition of the micro/nano-plastic particles. This work is promising as it demonstrates that a wide range of recyclable nanostructures, in-laboratory built or commercial, can provide ultra-trace capability for quantification for both soluble polymers and insoluble plastics in air, water and soil. It may thereby produce key missing information to determine the fate of micro/nanoplastics in the environment, and their impacts on human health.
Afficher plus [+] Moins [-]Biochar-mediated transformation of titanium dioxide nanoparticles concerning TiO2NPs-biochar interactions, plant traits and tissue accumulation to cell translocation
2021
Abbas, Qumber | Yousaf, Balal | Mujtaba Munir, Mehr Ahmed | Cheema, Ayesha Imtiyaz | Hucheina, Imarāna | Rinklebe, Jörg
Titanium dioxide nanoparticles (TiO₂NPs) application in variety of commercial products would likely release these NPs into the environment. The interaction of TiO₂NPs with terrestrial plants upon uptake can disturb plants functional traits and can also transfer to the food chain members. In this study, we investigated the impact of TiO₂NPs on wheat (Triticum aestivum L.) plants functional traits, primary macronutrients assimilation, and change in the profile of bio-macromolecule. Moreover, the mechanism of biochar-TiO₂NPs interaction, immobilization, and tissue accumulation to cell translocation of NPs in plants was also explored. The results indicated that the contents of Ti in wheat tissues was reduced about 3-fold and the Ti transfer rate (per day) was reduced about 2 fold at the 1000 mg L⁻¹ exposure level of TiO₂NPs in biochar amended exposure medium. Transmission electron microscopy (TEM) with elemental mapping confirmed that Ti concentrated in plant tissues in nano-form. The interactive effect of TiO₂NPs + biochar amendment on photosynthesis related and gas exchange traits was observed at relatively low TiO₂NPs exposure level (200 mg L⁻¹), which induced the positive impact on wheat plants proliferation. TiO₂NPs alone exposure to wheat also modified the plant’s bio-macromolecules profile with the reduction in the assimilation of primary macronutrients, which could affect the food crop nutritional value and quality. X-ray photoelectron spectroscopy (XPS) chemical analysis of biochar + TiO₂NPs showed an additional peak, which indicated the binding interaction of NPs with biochar. Moreover, Fourier-transform infrared (FTIR) spectroscopy confirmed that the biochar carboxyl group is the main functionality involved in the bonding process with TiO₂NPs. These findings will help for a mechanistic understanding of the role of biochar in the reduction of NPs bioavailability to primary producers of the terrestrial environment.
Afficher plus [+] Moins [-]Highly-efficient green photocatalytic cementitious materials with robust weathering resistance: From laboratory to application
2021
Guo, Ming-Zhi | Ling, Tung-Chai | Poon, C. S. (Chi-sun)
The combined use of nano-TiO₂ with cementitious materials offers an environmentally-friendly way to combat the air pollution problem. However, a trade-off between a high efficiency and a robust weathering resistance has often to be made for most of the attempted nano-TiO₂ incorporation methods. This paper developed a simple and effective “spraying” method to coat nano-TiO₂ particles on the surface of concrete surface layers (CSL). The results showed that the NOₓ removal rate of the samples increased with an increase in both the concentrations of nano-TiO₂ solutions and the number of times of the spraying action. And the conditions for preparation of the Spray AB (the CSL were first sprayed with the 30 g L⁻¹ TiO₂-solution 20 times, followed by mechanical compaction, and for another 20 times after the compaction) were found to be optimal in terms of NOₓ removal performance and weathering resistance. The Spray AB was superior to the 5% TiO₂-intermixed samples with respect to photocatalytic NOₓ removal ability. Compared with TiO₂-dip-coated samples, the Spray AB samples had better and robust weathering resistance. A case study on the factory-fabricated green Eco-blocks (produced by the laboratory-developed spray method and the conventional intermix method) was performed. Examination and comparison on their respective photocatalytic NOₓ removal further verified the advantages of the spray method over the intermix method.
Afficher plus [+] Moins [-]Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Afficher plus [+] Moins [-]Ecotoxicological screening of UV-filters using a battery of marine bioassays
2021
Vieira Sanches, Matilde | Oliva, Matteo | De Marchi, Lucia | Cuccaro, Alessia | Puppi, Dario | Chiellini, Federica | Freitas, Rosa | Pretti, Carlo
The present study aimed to assess the toxicity of seven UV-filters: zinc oxide nanoparticles (nZnO, particle size <100 nm), titanium dioxide nanoparticles (nTiO₂, primary particle size 21 nm), 2-ethylhexyl-4-methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4-MBC), avobenzone (AVO), octocrylene (OCTO) and benzophenone-3 (BP-3) on three species: Aliivibrio fischeri (inhibition of bioluminescence), Phaeodactylum tricornutum (growth inhibition) and Ficopomatus enigmaticus (larval development success). Results showed nTiO₂ to be the most toxic for P. tricornutum (EC₅₀ 0.043 mg L⁻¹), while no effect was observed in A. fischeri and F. enigmaticus. EHMC was the most toxic to A. fischeri (EC₅₀ 0.868 mg L⁻¹ (15 min) and 1.06 mg L⁻¹ (30 min)) and the second most toxic to P. tricornutum. For F. enigmaticus, the lowest percentages of correct development resulted from 4-MBC exposure, with EC₅₀ of 0.836 mg L⁻¹. Overall, AVO induced low toxicity to every assessed species and OCTO was the least toxic for F. enigmaticus larvae. Considering the results obtained for F. enigmaticus, further larval development assays were performed with nZnO and EHMC under different light (light vs darkness) and temperature (20 and 25 °C) conditions, showing higher percentages of correct development at 25 °C, independently on light/darkness conditions. Under different temperature and photoperiod conditions, nZnO was more toxic than EHMC. Overall, nZnO and EHMC were among the most toxic UV filters tested and, when testing the effects of these UV-filters with temperature the results highlight that the impacts are liable to be lessened at higher temperatures (25 °C compared with 20 °C), in the case of this estuarine polychaete species. Nevertheless, further experiments are necessary to describe the effects of these two UV-filters at different organization levels, to study the toxicity of eventual degradation by-products and to provide more information on the combination of different stressors.
Afficher plus [+] Moins [-]