Affiner votre recherche
Résultats 1-10 de 356
Constructed Wetlands: A sustainable way of Treating Wastewater in Cold Climate - A review
2022
Singh, Adarsh | Katoch, Surjit | Bajpai, Mukul | Rawat, Akash
The use of constructed wetland (CW) is a natural way of treating wastewater sustainably and economically. However, the implementation of these systems in freezing conditions is still a matter of research and development. The treatment capacity of CWs relies largely on the biological and biochemical processes which further depends on physical conditions such as temperature, solar radiations, etc. Application of wetland systems for treating wastewater faces many challenges in regions with cold climates, resolving which this review has been made. This paper presents a thorough understanding of the components of CWs and their role in contaminant removal. A comprehensive review of the different types of CWs has been done describing the treatment efficiency achieved by its implementation in the cold climate. Furthermore, various technologies which can be clubbed with CWs have also been listed along with the treatment efficiencies obtained. Literature survey indicates that the extent of removing organics (COD and BOD5) and total phosphorous (TP) are not likely to be affected, but total nitrogen (TN) removal appears to slow down at low temperatures. Despite several advantages of CW technology, further research is required to select suitable macrophytes and optimum design parameters to compensate for frigid conditions.
Afficher plus [+] Moins [-]Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications
2022
Santini, G. | Acconcia, S. | Napoletano, M. | Memoli, V. | Santorufo, L. | Maisto, G.
Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred.
Afficher plus [+] Moins [-]Microplastics trapped in soil aggregates of different land-use types: A case study of Loess Plateau terraces, China
2022
Cheung, Joys H. Y. | Huiyan, | An, Shaoshan | Zhao, Junfeng | Xiao, Li | Li, Haohao | Huang, Qian
Land-use types may affect soil aggregates' stability and organic carbon (OC) distribution characteristics, but little is known about the effects on the distribution characteristics of microplastics (MPs) in the aggregates. Hence, the MPs abundance of soil aggregates and analyzed aggregates’ stability, composition, and OC content from two soil layers of four land-use types in Gansu Province were investigated in this study. The total MPs abundances in woodland, farmland (wheat, maize, and potato), orchard, and intercropping (potato + apple orchard) of top and deep soils were 1383.3 and 1477.9, 1324.6 and 931.1, 1757.1 and 1930.9, 2127.2 and 1998.0, 1335.9 and 886.7, and 1777.5 and 1683.3 items kg⁻¹, respectively. The largest MPs abundance was detected in the >5 mm fractions of topsoil in potato (3077.3 items kg⁻¹), followed by maize (3044.7 items kg⁻¹) and intercropping (2718.4 items kg⁻¹). In the topsoil, the total MPs abundance increased significantly with decreasing aggregate stability, and also was positively correlated with bulk density, microbial biomass, and total nitrogen contents of bulk soil. Summarizing, the abundance distribution of MPs correlates with the soil aggregate characteristics of the different land-use types.
Afficher plus [+] Moins [-]Simultaneous removal of heterocyclic drugs and total nitrogen from biochemical tailwater by peracetic acid/cobalt-loaded ceramsite-based denitrification biofilter
2022
Li, Tong | Jin, Lili | Zhu, Shanshan | Zhang, Xuxiang | Ren, Hongqiang | Huang, Hui
It is difficult to achieve simultaneous and efficient removal of heterocyclic drugs (HCDs) and total nitrogen (TN) in conventional denitrification biofilter (DNBF). Inspired by the effective degradation of refractory organic matter by cobalt-based advanced oxidation process and the need for in-situ upgrading of DNBF, peracetic acid (PAA)/cobalt-loaded ceramsite-based DNBF system was constructed for the first time to treat biochemical tailwater containing HCDs. Results showed that PAA/Co-DNBF had relatively high removal rates for the four HCDs with the order of CBZ > TMP > SDZ > SMX, and the optimal DNBF was H2 with 150 μg L⁻¹of PAA. Overall, TN and HCDs removal increased by 178%–455% and 2.50%–40.99% respectively. When the influent concentration of NO₃⁻-N, COD and each HCDs of 20 mg/L, 60 mg/L and 20 μg/L, below 15 mg/L of effluent TN and the highest average removal rate of SMX (67.77%) could be achieved, under HRT of 4 h in H2. More even distribution of microbial species and low acute toxicity of effluent were also achieved. More even distribution of microbial species and low acute toxicity of effluent were also achieved. In addition, high extracellular polymeric substance (EPS) content and Gordonia after the addition of PAA contributed to the degradation of HCDs. This study supplied a potentially effective strategy for the treatment of biochemical tailwater containing HCDs and provided new insight into the advance of denitrification technology.
Afficher plus [+] Moins [-]Long-term exposure to nanoplastics reshapes the microbial interaction network of activated sludge
2022
Chen, Daying | Wei, Zizhang | Wang, Zhimin | Yang, Yongkui | Ma, Yukun | Wang, Xiaohui | Zhao, Lin
Wastewater treatment plants have been identified as an important gathering spot for nanoplastics, possibly having unintended impacts on important biological nutrient removal processes. The underlying effects of long-term exposure of activated sludge to nanoplastics on nutrient removal and the mechanisms involved remain unclear. This study investigated the effect of polystyrene nanoplastics (Nano-PS) on the treatment performance and microbial community structure, and network in activated sludge. The results indicate that 1000 μg/L Nano-PS had chronic negative effects on the treatment performance in a continuous test over 140 days. Nano-PS had no significant impact in the earlier stages (0–50 days). However, as exposure time increased, the removal efficiencies of chemical oxygen demand, total phosphorous, and total nitrogen (TN) decreased by 2.7, 33.2, and 23.5%, respectively, in the later stages (87–132 days). These adverse impacts further manifested as a change in the topological characteristics, forming a smaller scale, lower complexity, and weaker transfer efficiency of the microbial network. Moreover, the scale and complexity of subnetwork-nitrogen removal bacteria and subnetwork-nitrifier were inhibited, leading to an increase in the effluent TN and NH₄⁺-N. The decreased modules and connectors (keystone taxa) likely caused the deterioration of treatment performance and functional diversity, which was consistent with the change in PICRUSt results. Less competition, denser nodes, and more complex module structures were induced as a strategy to mediate the long-term stress of nano-PS. To our knowledge, this is the first attempt to explore the long-term effects of nano-PS on the microbial interaction network of activated sludge, laying an experimental foundation for reducing the risks associated with nanoplastics.
Afficher plus [+] Moins [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Afficher plus [+] Moins [-]Temporal and spatial variations in nitrogen use efficiency of crop production in China
2022
Yan, Xiaoyuan | Xia, Longlong | Ti, Chaopu
The low value of nitrogen use efficiency (NUE) (around 30%) of crop production in China highlights the necessity to adopt reasonable N managements in national scale. After the implementation of ‘National Soil Testing and Formulated Fertilization’ program in 2005, many field experiments have reported an increase of NUE for crop productions in China. This has prompted discussion regarding the extent to which NUE in crop production has been improved. Here, we analyzed the temporal and spatial changes in NUE (crop N uptake/total N input) and cumulative synthetic and non-synthetic N fertilizer recovery efficiency of crop production in China during 1980–2014, and evaluated the relationship between NUE and economic growth (purchasing power parity, PPP) at national and provincial scale. The results showed that the overall NUE of crop production in China clearly increased from 35 to 42% during 2003–2014, and an increase in NUE was further evidenced by increases in cumulative recovery efficiency of both synthetic and non-synthetic N fertilizer. The relationship between NUE and PPP can be described by an environmental Kuznets curve at the national scale, with NUE first decreasing then increasing with PPP. However, this relationship exhibited large spatial variation: 1) In economically developed (e.g., Guangdong and Zhejiang) and undeveloped provinces (e.g., Yunnan and Guizhou), NUE generally decreased and then remained at low levels (20–35%) as PPP increased. 2) In major agricultural provinces with high (e.g., Shandong and Jiangsu) or intermediate levels (e.g., Hunan and Hebei) of economic development, a pronounced increasing trend in NUE with PPP was observed. These results highlight the necessity of developing region-oriented N management strategies to further increase the NUE of crop production in China, particularly in the economically developed and undeveloped provinces.
Afficher plus [+] Moins [-]Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China’s forests from tropical to boreal zone
2021
Ma, Suhui | Chen, Guoping | Du, Enzai | Tian, Di | Xing, Aijun | Shen, Haihua | Ji, Chengjun | Zheng, Chengyang | Zhu, Jianxiao | Zhu, Jiangling | Huang, Hanyue | He, Hongbo | Zhu, Biao | Fang, Jingyun
Atmospheric nitrogen (N) deposition has a significant influence on soil organic carbon (SOC) accumulation in forest ecosystems. Microbial residues, as by-products of microbial anabolism, account for a significant fraction of soil C pools. However, how N deposition affects the accumulation of soil microbial residues in different forest biomes remains unclear. Here, we investigated the effects of six/seven-year N additions on microbial residues (amino sugar biomarkers) in eight forests from tropical to boreal zone in eastern China. Our results showed a minor change in the soil microbial residue concentrations but a significant change in the contribution of microbial residue-C to SOC after N addition. The contribution of fungal residue-C to SOC decreased under low N addition (50 kg N ha⁻¹ yr⁻¹) in the tropical secondary forest (−19%), but increased under high N addition (100 kg N ha⁻¹ yr⁻¹) in the temperate Korean pine mixed forest (+21%). The contribution of bacterial residue-C to SOC increased under the high N addition in the subtropical Castanopsis carlesii forest (+26%) and under the low N addition in the temperate birch forest (+38%), respectively. The responses of microbial residue-C in SOC to N addition depended on the changes in soil total N concentration and fungi to bacteria ratio under N addition and climate. Taken together, these findings provide the experimental evidence that N addition diversely regulates the formation and composition of microbial-derived C in SOC in forest ecosystems.
Afficher plus [+] Moins [-]Efficient utilization of Iris pseudacorus biomass for nitrogen removal in constructed wetlands: Combining alkali treatment
2021
Gu, Xushun | He, Shengbing | Huang, Jungchen
Aquatic plant biomass like Iris pseudacorus can be used as electron donor to improve denitrification performance in subsurface constructed wetlands. However, the phenomenon that the nitrogen removal rate declined in the terminal stage restricted the utilization of litters. In terms of this problem, this study investigated the performance of the used biomass through alkali treatment on nitrogen removal and analyzed the effect of alkali treatment on the component and structure of biomass and microbial community. The results showed that the alkali-treated biomass could further enhance the nitrogen removal by nearly 15% compared with used ones. The significant damage of cell walls and compact fibers containing cellulose and lignin through alkali treatment mainly resulted in the improvement of carbon release and nitrogen removal. With the addition of alkali-treated biomass, the richness index of microbes was higher compared with other biomass materials. Furthermore, the abundance of denitrification related genera increased and the abundance of genera for nitrification was maintained. Based on these finds, a mode of a more efficient Iris pseudacorus self-consumed subsurface flow constructed wetlands was designed. In this mode, the effluent total nitrogen could be stabilized below 5 mg L⁻¹ for nine months and the weight of litters could be further cut down by 75%. These findings would contribute to efficient utilization of plant biomass for nitrogen removal enhancement and final residue reduction in the wetlands.
Afficher plus [+] Moins [-]Assessment of extrinsic and intrinsic influences on water quality variation in subtropical agricultural multipond systems
2021
Chen, Wenjun | Nover, Daniel | Xia, Yongqiu | Zhang, Guangxin | Yen, Haw | He, Bin
Understanding wetland water quality dynamics and associated influencing factors is important to assess the numerous ecosystem services they provide. We present a combined self-organizing map (SOM) and linear mixed-effects model (LMEM) to relate water quality variation of multipond systems (MPSs, a common type of non-floodplain wetlands in agricultural regions of southern China) to their extrinsic and intrinsic influences for the first time. Across the 6 test MPSs with environmental gradients, ammonium nitrogen (NH₄⁺-N), total nitrogen (TN), and total phosphate (TP) almost always exceeded the surface water quality standard (2.0, 2.0, and 0.4 mg/L, respectively) in the up- and midstream ponds, while chlorophyll-a (Chl-a) exhibited hypertrophic state (≥28 μg/L) in the midstream ponds during the wet season. Synergistic influences explained 69±12% and 73±10% of the water quality variations in the wet and dry season, respectively. The adverse, extrinsic influences were generally 1.4, 6.9, 3.2, and 4.3 times of the beneficial, intrinsic influences for NH₄⁺-N, nitrate nitrogen (NO₃⁻-N), TP, and potassium permanganate index (CODMₙ), respectively, although the influencing direction and degree of forest and water area proportion were spatiotemporally unstable. While CODMₙ was primarily linked with rural residential areas in the midstream, higher TN and TP concentrations in the up- and midstream were associated with agricultural land, and NH₄⁺-N reflected a small but non-negligible source of free-range poultry feeding. Pond surface sediments exhibited consistent, adverse effects with amplifications during rainfall, while macrophyte biomass can reflect the biological uptake of CODMₙ and Chl-a, especially in the mid- and downstream during the wet season. Our study advances nonpoint source pollution (NPSP) research for small water bodies, explores nutrient “source-sink” dynamics, and provides a timely guide for rural planning and pond management. The modelling procedures and analytical results can inform refined assessment of similar NFWs elsewhere, where restoration efforts are required.
Afficher plus [+] Moins [-]