Affiner votre recherche
Résultats 1-10 de 34
Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment Texte intégral
2015
Barton, Lauren E. | Auffan, Melanie | Olivi, Luca | Bottero, Jean-Yves | Wiesner, Mark R. | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Elettra Sincrotrone Trieste | Duke University [Durham] | ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011) | ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011)
Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment Texte intégral
2015
Barton, Lauren E. | Auffan, Melanie | Olivi, Luca | Bottero, Jean-Yves | Wiesner, Mark R. | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Elettra Sincrotrone Trieste | Duke University [Durham] | ANR-11-IDEX-0001,Amidex,INITIATIVE D'EXCELLENCE AIX MARSEILLE UNIVERSITE(2011) | ANR-11-LABX-0064,SERENADE,Vers une conception de nanomatériaux innovants, durables et sûrs(2011)
International audience | Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO2 NPs studied. (C) 2015 Elsevier Ltd. All rights reserved.
Afficher plus [+] Moins [-]Heteroaggregation, transformation and fate of CeO2 nanoparticles in wastewater treatment Texte intégral
2015
Barton, Lauren E. | Auffan, Melanie | Olivi, Luca | Bottero, Jean-Yves | Wiesner, Mark R.
Wastewater Treatment Plants (WWTPs) are a key pathway by which nanoparticles (NPs) enter the environment following release from NP-enabled products. This work considers the fate and exposure of CeO2 NPs in WWTPs in a two-step process of heteroaggregation with bacteria followed by the subsequent reduction of Ce(IV) to Ce(III). Measurements of NP association with solids in sludge were combined with experimental estimates of reduction rate constants for CeO2 NPs in Monte Carlo simulations to predict the concentrations and speciation of Ce in WWTP effluents and biosolids. Experiments indicated preferential accumulation of CeO2 NPs in biosolids where reductive transformation would occur. Surface functionalization was observed to impact both the distribution coefficient and the rates of transformation. The relative affinity of CeO2 NPs for bacterial suspensions in sludge appears to explain differences in the observed rates of Ce reduction for the two types of CeO2 NPs studied.
Afficher plus [+] Moins [-]Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans Texte intégral
2015
Starnes, Daniel L. | Unrine, Jason M. | Starnes, Catherine P. | Collin, Blanche | Oostveen, Emily K. | Ma, Rui | Lowry, Gregory V. | Bertsch, Paul M. | Tsyusko, Olga V. | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
International audience | Sulfidation is a major transformation product for manufactured silver nanoparticles (Ag-MNPs) in the wastewater treatment process. We studied the dissolution, uptake, and toxicity of Ag-MNP and sulfidized Ag-MNPs (sAg-MNPs) to a model soil organism, Caenorhabditis elegans. Our results show that reproduction was the most sensitive endpoint tested for both Ag-MNPs and sAg-MNPs. We also demonstrate that sulfidation not only decreases solubility of Ag-MNP, but also reduces the bioavailability of intact sAg-MNP. The relative contribution of released Ag+ compared to intact particles to toxicity was concentration dependent. At lower total Ag concentration, a greater proportion of the toxicity could be explained by dissolved Ag, whereas at higher total Ag concentration, the toxicity appeared to be dominated by particle specific effects. 2014 Elsevier Ltd. All rights reserved.
Afficher plus [+] Moins [-]Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging Texte intégral
2022
Peng, Jinlong | Fu, Fenglian | Ye, Chujia | Tang, Bing
Selenium (Se) is regarded as a trace element for humans, but it is toxic in excess. In natural environments, the mobility of Se is dominantly controlled by the Se oxyanions with high solubility such as selenite (Se(IV)). Se(IV) is often associated with the omnipresent ferrihydrite and coexisting organic matter. However, there is little information on the dynamic interactions among Se(IV), fulvic acid, and ferrihydrite. This study investigated the influence of fulvic acid on ferrihydrite-Se(IV) coprecipitates (Fh-Se) transformation for 8 days and the subsequent behavior of Se(IV) at varied pH (5.0, 7.5, and 10.0). Results showed that fulvic acid had different effects on Fh-Se transformation at varied pH values. Fh-Se transformation was promoted by fulvic acid at initial pH 5.0 whereas it was inhibited at initial pH 10.0. Interestingly, at initial pH 7.5, Fh-Se transformation was promoted at a low C/Fe ratio while it was suppressed at a high C/Fe ratio. Besides, fulvic acid induced the generation of more extractable Se(IV) at initial pH 5.0 and more coprecipitated Se(IV) at initial pH 7.5 and blocked the release of Se(IV) at initial pH 10.0. Fulvic acid possibly interacted with Se(IV) via carboxyl complexation and weakened the inhibition of Se(IV) on Fh-Se transformation. Thus, fulvic acid increased the transformation rate of Fh-Se. These findings help to uncover the environmental behavior of Se(IV) and organic matter during ferrihydrite transformation.
Afficher plus [+] Moins [-]Dissolved organic nitrogen in wastewater treatment processes: Transformation, biosynthesis and ecological impacts Texte intégral
2021
Zheng, Fang | Wang, Jie | Xiao, Rui | Chai, Wenbo | Xing, Defeng | Lu, Huijie
With the upgrade of wastewater treatment plants (WWTPs) to meet more stringent discharge limits for nutrients, dissolved organic nitrogen (DON) is present at an increasing percentage (up to 85%) in the effluent. Discharged DON is of great environmental concern due to its potentials in stimulating algal growth and forming toxic nitrogenous disinfection by-products (N-DBPs). This article systematically reviewed the characteristics, transformation and ecological impacts of wastewater DON. Proteins, amino acids and humic substances are the abundant DON compounds, but a large fraction (nearly 50%) of DON remains uncharacterized. Biological treatment processes play a dominant role in DON transformation (65–90%), where DON serves as both nutrient and energy sources. Despite of the above progress, critical knowledge gaps remain in DON functional duality, relationship with dissolved inorganic nitrogen (DIN) species, and coupling/decoupling with the dissolved organic carbon (DOC) pool. Development of more rapid and accurate quantification methods, modeling transformation processes, and assessing DON-associated eutrophication and N-DBP formation risks should be given priority in further investigations.
Afficher plus [+] Moins [-]Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging Texte intégral
2020
Meng, Zhuowen | Huang, Shuang | Xu, Ting | Deng, Yiyi | Lin, Zhongbing | Wang, Xiugui
We quantified the transport and transformation of Cd in historically contaminated soil (OS) and artificially contaminated soil (NS), treated with 3% (w/w) rice straw biochar prepared at 400 °C (BC400) and 700 °C (BC700) under combined dry-wet and freeze-thaw cycles for 72 days simulating the natural aging process of 8 years. An improved three-layer mesh experiment was developed to simulate the natural situation in field. The result showed that the total Cd concentration increased in the biochar but decreased in the soil, suggesting that Cd was transported from the soil into the biochar during the aging process. The total Cd concentration in BC400 treated with both soils was higher than that in BC700 treated with both soils, however, BC700 displayed stronger ability on immobilizing Cd than BC400 because the Tessier exchangeable Cd fraction in BC700 treated both soils was lower than that in BC400 treated with both soils. The average Tessier exchangeable Cd fraction in the soil and biochar decreased in all treatments during the aging process, indicating that Cd tended to be more stable in the soil for a long term. The result also showed that biochar could immobilizate Cd by decreasing the Tessier exchangeable Cd fraction of soil and biochar, and the quantitative contributions of biochar and soil to Cd immobilization were different in OS and NS treated with BC400 and BC700. The biochar contribution to the reduction in Tessier exchangeable Cd fraction accounted for 40–85% in NS treated with BC400 and 54–82% in NS treated with BC700. However, in OS treated with biochar, the biochar contribution accounted for nearly 100%, and soil had almost no contribution. In summary, OS did not contribute to Cd immobilization, while NS contributed nearly 50% to Cd immobilization, and BC700 was more effective in immobilizing Cd than BC400.
Afficher plus [+] Moins [-]Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide Texte intégral
2020
Li, Dan | Zhong, Yin | Zhu, Xifen | Wang, Heli | Yang, Weiqiang | Deng, Yirong | Huang, Weilin | Peng, Ping’an
Tris(2-chloroethyl) phosphate (TCEP) is a widely found emerging pollutant due to its heavy usage as a flame retardant. It is chemically stable and is very difficult to removal from water. The goal of this study was to explore whether iron monosulfide (FeS) can be used for reductive transformation of TCEP as FeS can react with a variety of halogenated organic contaminants. We used batch reactor systems to quantify the transformation reactions in the absence and presence of cetyltrimethylammonium bromide (CTAB, a common surfactant in aquatic environments). The results showed that, in the presence of CTAB (100 mg L⁻¹), FeS exhibited much greater reactivity towards TCEP as 93% of initial TCEP had been transformed within 14 d of reaction. In the absence of CTAB, it required 710 d of reaction to achieve 97.3% reduction of initial TCEP. The enhancement of CTAB on TCEP transformation rate could be due to the facts that CTAB could stabilize FeS suspension against aggregation, protect FeS from rapid oxidation, and increase surface adsorption of TCEP on FeS. XPS analysis showed that both Fe(II) and S(-II) species on the FeS surface were involved in the reductive transformation of TCEP. Analysis of transformation products revealed that TCEP was reductively transformed into bis(2-chloroethyl) phosphate (BCEP), Cl⁻ and C₂H₄. These findings showed that FeS may play an important role in the reductive transformation of TCEP when TCEP coexisting with CTAB in aquatic environments.
Afficher plus [+] Moins [-]Environmental transformations and ecological effects of iron-based nanoparticles Texte intégral
2018
Lei, Cheng | Sun, Yuqing | Tsang, Daniel C.W. | Lin, Daohui
The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs.
Afficher plus [+] Moins [-]Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with 13C labeling Texte intégral
2016
Sun, Kai | Liang, Shangtao | Kang, Fuxing | Gao, Yanzheng | Huang, Qingguo
Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and 13C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and 13C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with 13C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs.
Afficher plus [+] Moins [-]Uptake, translocation and transformation of antimony in rice (Oryza sativa L.) seedlings Texte intégral
2016
Cai, Fei | Ren, Jinghua | Tao, Shu | Wang, Xilong
Antimony (Sb), as a toxic metalloid, has been gaining increasing research concerns due mainly to its severe pollution in many places. Rice has been identified to be the dominant intake route of Sb by residents close to the Sb mining areas. A hydroponic experiment was conducted to investigate the difference in uptake, translocation and transformation of Sb in rice seedlings of four cultivars exposed to 0.2 or 1.0 mg/L of Sb(V). The results showed that mass concentration of iron plaque (mg/kg FW) formed at the root surfaces of cultivar N was the highest among all tested cultivars at both low and high exposure levels of Sb(V). The accumulated Sb concentration in iron plaque significantly increased with an increase in mass concentration of iron plaque formed at the rice root. The total amount of iron plaque (mg/pot) at rice root generally increased with increasing exposed Sb(V) concentration, which was closely associated with the increasing lipid peroxidation in roots. Concentration percentage of Sb in rice root significantly reduced as the corresponding value in the iron plaque increased, suggesting that iron plaque formation strongly suppressed uptake of Sb by rice root. Sb concentration in rice tissues followed an order: root > stem, leaf. The japonica rice (cultivars N and Z) exhibited a stronger translocation tendency of Sb from root to stem than indica hybrid rice (cultivars F and G). Translocation of Sb from root of cultivar F to its stem and leaf was sharply enhanced with increasing Sb exposure concentration. Sb(V) could be reduced to Sb(III) in rice tissues, especially in stems (10–26% of the total Sb). For the sake of food safety, the difference in uptake, translocation and transformation of Sb in rice species planted in Sb-contaminated soils should be taken into consideration.
Afficher plus [+] Moins [-]Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process Texte intégral
2015
Yuan, Guo-Li | Wu, Ming-Zhe | Sun, Yong | Li, Jun | Han, Peng | Wang, Gen-Hou
The fraction of trans-chlordane (TC) in chlordane was used to indicate racemic degradation while the enantiomer fractions (EFs) indicated enantioselective depletion. In 44 soils of the Central Tibetan Plateau, the fractions of TC ranged from 0.368 to 0.411. The EFs ranged from 0.174 to 0.696 for TC and from 0.483 to 0.672 for cis-chlordane (CC). (−) enantiomer excess (ee) was found to be 80.0% in the soils for TC and (+) ee was 86.5% for CC. The fraction of TC changed with the clay content while the EFs changed with the soil organic carbon. Meanwhile, the fractions of TC and the EFs were determined for the surficial sediments in Yamzhog Yumco Lake, which were compared with those in the soils at its catchment area. The composition and chiral signature of chlordane did not vary between soils and sediments. Our results will help to elucidate the transformation of chlordane in soils and in surficial transport.
Afficher plus [+] Moins [-]