Affiner votre recherche
Résultats 1-10 de 358
Bioimaging revealed contrasting organelle-specific transport of copper and zinc and implication for toxicity
2022
Yuan, Liuliang | Wang, Wen-Xiong
Zn and Cu are two of the essential trace elements and it is important to understand the regulation of their distribution on cellular functions. Herein, we for the first time investigated the subcellular fate and behavior of Zn and Cu in zebrafish cells through bioimaging, and demonstrated the completely different behaviors of Zn and Cu. The distribution of Zn²⁺ was concentration-dependent, and Zn²⁺ at low concentration was predominantly located in the lysosomes (76.5%). A further increase of cellular Zn²⁺ resulted in a spillover and more diffusive distribution, with partitioning to mitochondria and other regions. In contrast, the subcellular distribution of Cu⁺ was time-dependent. Upon entering the cells, Cu²⁺ was reduced to Cu⁺, which was first concentrated in the mitochondria (71.4%) followed by transportation to lysosomes (58.6%), and finally removal from the cell. With such differential transportation, Cu²⁺ instead of Zn²⁺ had a negative effect on the mitochondrial membrane potential and glutathione. Correspondingly, the pH of lysosomes was more sensitive to Zn²⁺ exposure and decreased with increasing internalized Zn²⁺, whereas it increased upon Cu²⁺ exposure. The responses of cellular pH showed an opposite pattern from the lysosomal pH. Lysosome was the most critical organelle in response to incoming Zn²⁺ by increasing its number and size, whereas Cu²⁺ reduced the lysosome size. Our study showed that Zn²⁺ and Cu²⁺ had completely different cellular handlings and fates with important implications for understanding of their toxicity.
Afficher plus [+] Moins [-]Nitrous oxide emission in altered nitrogen cycle and implications for climate change
2022
Aryal, Babita | Gurung, Roshni | Camargo, Aline F. | Fongaro, Gislaine | Treichel, Helen | Mainali, Bandita | Angove, Michael J. | Ngo, Huu Hao | Guo, Wenshan | Puadel, Shukra Raj
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N₂O) emissions, which are accelerating at an unprecedented rate. N₂O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N₂O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N₂O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N₂O generation. The authors also estimate the N₂O–N emission mainly due to anthropogenic activities will be around 8.316 Tg N₂O–N yr⁻¹ in 2050. In order to minimize and tackle the N₂O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Afficher plus [+] Moins [-]Exploring use of a commercial passive sampler in a closed static chamber to measure ammonia volatilization
2022
Jaeman, Sabrina | Nurulhuda, Khairudin | Amin, Adibah Mohd | Sulaiman, Muhammad Firdaus | Man, Hasfalina Che
Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH₃ volatilization. The volatilized NH₃ represents monetary loss and contributes to increase in formation of PM₂.₅ in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH₃ is also a precursor to N₂O formation. Thus, it is important to monitor NH₃ volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH₃ absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH₃ sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH₃ was obtained for each of the trapping methods. Highest level of NH₃ was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH₃ under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
Afficher plus [+] Moins [-]Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change
2021
Muir, Derek C.G. | Galarneau, Elisabeth
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada’s environmental measurement strategy and biogeochemical modelling capability.
Afficher plus [+] Moins [-]Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments
2021
Marvin, Christopher H. | Berthiaume, Alicia | Burniston, Deborah A. | Chibwe, Leah | Dove, Alice | Evans, Marlene | Hewitt, L Mark | Hodson, Peter V. | Muir, Derek C.G. | Parrott, Joanne | Thomas, Philippe J. | Tomy, Gregg T.
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Afficher plus [+] Moins [-]Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China
2021
Zhu, Xiao | Shen, Jianlin | Li, Yong | Liu, Xuejun | Xu, Wen | Zhou, Feng | Wang, Juan | Reis, Stefan | Wu, Jinshui
The study of emissions and depositions of atmospheric reactive nitrogen species (Nᵣs) in a region is important to uncover the sources and sinks of atmospheric Nᵣs in the region. In this study, atmospheric total Nᵣs depositions including both wet-only and dry deposition were monitored simultaneously across major land-use types in a 105 km² catchment called Jinjing River Catchment (JRC) in subtropical central China from 2015 to 2016. Based on activity data and emission factors for the main Nᵣs emission sources, ammonia (NH₃) and nitrogen oxides (NOₓ) emission inventories for the catchment were also compiled. The estimated total Nᵣs deposition in JRC was 35.9 kg N ha⁻¹ yr⁻¹, with approximately 49.7 % attributed to reduced compounds (NHₓ), and 40.5 % attributed to oxidized (NOy). The total Nᵣs emission rate in JRC was 80.4 kg N ha⁻¹ yr⁻¹, with 61.5 and 18.9 kg N ha⁻¹ yr⁻¹ from NH₃ and NOₓ emissions, respectively. Livestock excretion and fertilization were the two main contributing emission sources for NH₃, while vehicle sources contributed the bulk of NOₓ emissions. The net atmospheric budgets of Nᵣs in paddy field, forest, and tea field were +3.7, −36.1, and +23.8 kg N ha⁻¹ yr⁻¹, respectively. At the catchment scale, the net atmospheric budget of Nᵣs was +47.7 kg N ha⁻¹ yr⁻¹, with +43.7 kg N ha⁻¹ yr⁻¹ of NHₓ and +4.0 kg N ha⁻¹ yr⁻¹ of NOy, indicating that the subtropical catchment was net sources of atmospheric Nᵣs. Considering that excessive atmospheric Nᵣ emissions and deposition may cause adverse effects on the environment, effects should be conducted to mitigate the Nᵣs emissions from agriculture and transportation, and increasing the area of forest is good for reducing the net positive budget of atmospheric Nᵣs in the subtropical catchments in China.
Afficher plus [+] Moins [-]Environmental impact of amino acids on selenate-bearing hydrocalumite: Experimental and DFT studies
2021
Wang, Mengmeng | Akamatsu, Hirofumi | Dabo, Ismaila | Sasaki, Keiko
Selenium (Se) radioactive wastes can be disposed through stabilization/solidification (S/S) based on the cementitious matrix on hydration products, where hydrocalumite (Ca₂Al-LDH) is expected to play an important role in the retention of SeO₄²⁻. Natural organic matters (NOMs) are known to be a risk to affect the transportation and mobility of undesirable chemical species in the pedosphere which receives the low level radioactive wastes (LLW). In the present work, five amino acids were selected as the simplified models of NOMs in the pedosphere to explore their effects on the stability of Ca₂Al-LDH after immobilized SeO₄²⁻ under alkaline conditions. As the loading amount of amino acids on Ca₂Al-LDH increasing, release of SeO₄²⁻ was enhanced in HGly, H₂Asp, and H₂Cys series, while no enhancement was observed in HPhe and HTrp series. Density functional theory (DFT) calculation predicted ion-exchange of amino acids and CO₃²⁻ with SeO₄²⁻ in a unit cell of LDH model. The intercalation of Asp²⁻ and CO₃²⁻ caused 003 peaks in XRD sharper and d₀₀₃ decreased from 8.15 Å to 7.70 Å which is assigned to Ca₂Al-LDH(Asp, CO₃). In H₂Cys series, the 003 peaks were kept broad and SeO₄²⁻ was still relatively maintained in LDH which was caused by the lower amounts of intercalated CO₃²⁻ in the presence of H₂Cys. Amino acids in the interlayer of Ca₂Al-LDH have several possible configurations, where the most stable one is prone to be in a horizontal direction through hydrogen bonds and Ca–O chemical bonds. This provides an insight on the stability of selenate immobilized in hydrocalumite, which can be produced in cement disposing in the pedosphere for a long term of burying. Not only carbonate but also small molecular organic matters like amino acids possibly give environmental impact on the mobility of low level anionic radionuclides in LDH.
Afficher plus [+] Moins [-]Surveillance of ship emissions and fuel sulfur content based on imaging detection and multi-task deep learning
2021
Cao, Kai | Zhang, Zhenduo | Li, Ying | Xie, Ming | Zheng, Wenbo
Shipping makes up the major proportion of global transportation and results in an increasing emission of air pollutants. It accounts for 3.1%, 13%, and 15% of the annual global emissions of CO₂, SOₓ, and NOₓ, respectively. Hence, effective regulatory measures in line with the International Maritime Organization requirements regarding the fuel sulfur content (FSC) used in emission control areas are essential. An imaging detection approach is proposed to estimate SO₂, CO₂, and NO concentrations of exhaust gas and then calculate FSC based on the estimated gas concentrations. A multi-task deep neural network was used to extract the features from the ultraviolet and thermal infrared images of the exhaust plume. The network was trained to predict various gas concentrations. The results show high prediction accuracy for the remote monitoring of ship emissions.
Afficher plus [+] Moins [-]Spatiotemporal distribution and mass loading of organophosphate flame retardants (OPFRs) in the Yellow River of China (Henan segment)
2021
Han, Jing | Tian, Jian | Feng, Jinglan | Guo, Wei | Dong, Shuying | Yan, Xu | Su, Xianfa | Sun, Jianhui
During three sampling periods in 2014, systematic investigations were conducted into contamination profiles of ten organophosphate flame retardants (OPFRs) in both suspended particulate phase and water phase in the Yellow River (Henan Area). This research shows that OPFRs exist at lower concentrations in the suspended phase than in the water phase. The median concentration of 10 OPFRs (∑₁₀OPFRs) in the suspended particulate phase was 62.5 ng/g (fluctuating from ND to 6.17 × 10³ ng/g, dw), while their median concentration in the water phase was 109 ng/L (fluctuating from 35.6 to 469 ng/L). Among the selected 10 OPFRs, triethylphosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(2-chloroethyl) phosphate (TCEP) were the predominant compounds in the water phase (occupying 91.6% of the ∑₁₀OPFRs), while TCPP, TCEP, and tri-o-tolyl phosphate (o-TCP) were the most common in the suspended particulate phase, accounting for 90.1% of the ∑₁₀OPFRs. Across the three sampling periods, there was no significant seasonable variation for OPFRs either in the water phase or in the suspended particulate phase, except for TCEP and TCPP in the water phase. Compared with research findings relating to concentrations of OPFRs around China and abroad, the OPFRs of the Yellow River (Henan Area) in the water phase were at a moderate level. Suspended particles (SS) had a very important impact on the transportation of OPFRs in the studied area, with about 83.9% of ∑₁₀OPFRs inflow attributed to SS inflow and about 81.7% of ∑₁₀OPFRs outflow attributed to SS outflow. The total annual inflow and outflow of OPFRs were 7.72 × 10⁴ kg and 6.62 × 10⁴ kg in the studied area, respectively.
Afficher plus [+] Moins [-]Source apportionment and human health risk assessment of trace metals and metalloids in surface soils of the Mugan Plain, the Republic of Azerbaijan
2021
Han, Junho | Lee, Seoyeon | Mămmădov, Zaman | Kim, Minhee | Mammadov, Garib | Ro, Hee-Myong
The Mugan Plain is the most productive area in the Republic of Azerbaijan, but a previous study confirmed trace metal and metalloid (TM&M) contamination with Cr, Ni and Pb, and the potential ecological risk of As was estimated. However, no industrial activity was previously reported in this area; thus, a source apportionment model using positive matrix factorization (PMF) was employed to identify pollution sources, and a human health risk assessment was conducted to evaluate noncarcinogenic and carcinogenic risks. Surface soil samples were collected from 349 sites, and six major elements (Si, Ca, Cl, P, S and Sr) and 8 TM&Ms (As, Cd, Cr, Co, Cu, Ni, Pb and Zn) were analyzed by X-ray fluorescence and employed for further apportionment and risk assessment. As a result, the PMF model showed 7 factors, assigned to natural activity (12.9%), dry riverbed (13.6%), surface accumulation (3.1%), desalinization activity (3.2%), residential activity (12.3%), fossil fuel combustion (35.5%) and agricultural activity (19.3%). The PMF model characterized certain areas with desalinization activity in the previous Soviet period and with surface accumulation of salt, and these findings were confirmed by additional field surveys and historical Landsat satellite images. The risk assessment results showed that there was no risk for the adults, while for children, there was a noncarcinogenic risk, but no carcinogenic risk. Dermal contact was estimated to be the primary pathway, and Ni and As were identified as the most problematic TM&Ms for noncarcinogenic and carcinogenic risks, respectively. According to the results, fossil fuel combustion associated with heating and vehicle transportation was estimated to be the main source of pollution, contributing 42.6% of the noncarcinogenic and 48.0% of the carcinogenic risks. These results can provide scientific guidance to understand and prevent the risk of TM&Ms on the Mugan Plain.
Afficher plus [+] Moins [-]