Affiner votre recherche
Résultats 1-10 de 18
Confrontation assays and mycotoxin treatment reveal antagonistic activities of Trichoderma and the fate of Fusarium mycotoxins in microbial interaction
2020
Tian, Ye | Yu, Dianzhen | Liu, Na | Tang, Yan | Yan, Zheng | Wu, Aibo
Mycotoxins are toxic fungal metabolites, contaminating cereal grains in field or during processing and storage periods. These environmental contaminants pose great threats to humans and animals’ health due to their toxic effects. Type A trichothecenes, fumonisins and fusaric acid (FA) are commonly detected mycotoxins produced by various Fusarium species. Trichoderma spp. are promising antagonists in agriculture for their activities against plant pathogens, and also regarded as potential candidates for bioremediation of environmental contaminants. Managing toxigenic fungi by antagonistic Trichoderma is regarded as a sustainable and eco-friendly strategy for mycotoxin control. However, the metabolic activities of Trichoderma on natural occurring mycotoxins were less investigated. Our current work comprehensively explored the activities of Trichoderma against type A trichothecenes, fumonisins and FA producing Fusarium species via co-culture competition and indirect volatile assays. Furthermore, we investigated metabolism of type A trichothecenes and FA in Trichoderma isolates. Results indicated that Trichoderma were capable of bio-transforming T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol into their glycosylated forms and one Trichoderma strain could bio transform FA into low toxic fusarinol. These findings proved that Trichoderma isolates could manage toxigenic Fusarium via direct competition and volatile-mediated indirect inhibition. In addition, these antagonists possess defensive systems against mycotoxins for self-protection, which enriches our understanding on the interaction mechanism of Trichoderma spp. on toxigenic fungus.
Afficher plus [+] Moins [-]Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum)
2016
Tripāṭhī, Pratibhā | Singh, Poonam C. | Mishra, Aradhana | Srivastava, Suchi | Chauhan, Reshu | Awasthi, Surabhi | Miśrā, Sīmā | Dwivedi, Sanjay | Kupur, Preeti T. | Kalra, Alok | Tripathi, R. D. (Rudra D.) | Nautiyal, Chandra S.
Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.
Afficher plus [+] Moins [-]Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield
2021
Cheng, Hongyan | Zhang, Daqi | Ren, Lirui | Song, Zhaoxin | Li, Qingjie | Wu, Jiajia | Fang, Wensheng | Huang, Bin | Yan, Dongdong | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Soil-borne diseases have become increasingly problematic for farmers producing crops intensively under protected agriculture. Although soil fumigants are convenient and effective for minimizing the impact of soil-borne disease, they are most often detrimental to beneficial soil microorganisms. Previous research showed that bio-activation of soil using biological control agents present in biofertilizers or organic fertilizers offered promise as a strategy for controlling soil-borne pathogens when the soil was bio-activated after fumigation. Our research sought to determine how bio-activation can selectively inhibit pathogens while promoting the recovery of beneficial microbes. We monitored changes in the soil’s physicochemical properties, its microbial community and reductions in soil-borne pathogens. We found that the population density of Fusarium and Phytophthora were significantly reduced and tomato yield was significantly increased when the soil was bio-activated. Soil pH and soil catalase activity were significantly increased, and the soil’s microbial community structure was changed, which may have enhanced the soil’s ability to reduce Fusarium and Phytophthora. Our results showed that soil microbial diversity and relative abundance of beneficial microorganisms (such as Sphingomonas, Bacillus, Mortierella and Trichoderma) increased shortly after bio-activation of the soil, and were significantly and positively correlated with pathogen suppression. The reduction in pathogens may have been due to a combination of fumigation-fertilizer that reduced pathogens directly, or the indirect effect of an optimized soil microbiome that improved the soil’s non-biological factors (such as soil pH, fertility structure), enhanced the soil’s functional properties and increased tomato yield.
Afficher plus [+] Moins [-]Trichoderma asperellum reduces phoxim residue in roots by promoting plant detoxification potential in Solanum lycopersicum L
2020
Chen, Shuangchen | Yan, Yaru | Wang, Yaqi | Wu, Meijuan | Mao, Qi | Chen, Yifei | Ren, Jingjing | Liu, Airong | Lin, Xiaomin | Ahammed, Golam Jalal
Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.
Afficher plus [+] Moins [-]Biotransformation and Degradation Pathway of Pyrene by Filamentous Soil Fungus Trichoderma sp. F03
2020
Al Farraj, Dunia Abdulaziz | Hadibarata, Tony | Elshikh, Mohamed Soliman | Al Khulaifi, Manal M. | Kristanti, Risky Ayu
Pyrene, a toxic four-benzene-ring that persists in the ecosystem, is highly resistant to degradation. The goal of the research is to screen, isolate, and identify pyrene-degrading filamentous fungi via the molecular biological identification method. The capabilities of identified isolates in biodegradation and transformation of pyrene were also evaluated. Based on the morphological characterization and sequence alignments, results of neighbor-joining phylogenetic tree from 18S rRNA of F03 revealed that genetic similarity had achieved 99% of homology percentage and identified as Trichoderma sp. Trichoderma sp. F03 was able to degrade pyrene (78%) when culture conditions were set at 100 mg/L initial pyrene concentration in culture medium with pH 5 at 27 °C, the use of glucose as a carbon source and polyethylene glycol sorbitan monooleate as a biosurfactant without agitation. Finally, three metabolites, benzoic acid, 3-hydroxybenzoic acid, and acetic acid, were detected during the pyrene degradation process by using gas chromatography–mass spectrometry (GCMS).
Afficher plus [+] Moins [-]Discovering Metal-Tolerant Endophytic Fungi from the Phytoremediator Plant Phragmites
2018
Sim, CarrieSiew Fang | Cheow, YuenLin | Ng, SiLing | Ting, AdelineSu Yien
Fifteen endophytic isolates were recovered from the phytoremediator plant Phragmites. Phylogenetic analysis revealed they were primarily from the class Sordariomycetes and Dothiodiomycetes. Most of the endophytes in Sordariomycetes were from the orders Diaporthales (six isolates, e.g., Diaporthe, Phomopsis), Hypocreales (two isolates, e.g., Gliomastix, Trichoderma), and Xylariales (one isolate, e.g., Arthrinium), while members from Dothideomycetes were from the order Pleosporales (six isolates, e.g., Bipolaris, Curvularia, Microsphaeropsis, Saccharicola). The endophytes demonstrated varying responses to the metals (Al³⁺, Cu²⁺, Zn²⁺, Pb²⁺, and Cd²⁺) and concentrations (10, 25, 50, 100, and 200 mg L⁻¹) tested, with isolates of Dothideomycetes predominantly more tolerable to metals (80–97% tolerance) than Sordariomycetes (73–90% tolerance). Pb²⁺ was the least harmful towards the endophytes, while Al³⁺ appeared to be highly toxic with mean tolerable range (TR) of > 200 and 25–50 mg L⁻¹, respectively. Endophytes thriving in toxic metals may further be applied for biocontrol, bioremediation, or growth-promoting purposes in metal-contaminated areas.
Afficher plus [+] Moins [-]Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp
2017
Racić, Gordana | Körmöczi, Péter | Kredics, László | Raičević, Vera | Mutavdžić, Beba | Vrvić, Miroslav M. | Panković, Dejana
Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.
Afficher plus [+] Moins [-]Experimental Investigations on the Effect of Pretreatment in Anaerobic Digestion of Coir Pith Agro Waste
2024
Smitha Krishna Warrier and P. Sindhu
The coir industry in India’s southern coastal regions, especially in the state of Kerala, is becoming increasingly concerned about the environmental impact of the accumulation and incremental increase of coir pith each year. The objective of this study was to assess the effect of pretreatment on the anaerobic digestion of coir pith. The characterization study of coir pith shows high organic content, which can be anaerobically digested to produce biogas. But, the high lignin content (30.91%) makes the process slow. To overcome this, a biological pretreatment method was tried using two microbial cultures belonging to fungal genera known to be lignin decomposers, viz., Trichoderma and Pleurotus. By using Trichoderma, lignin content was reduced by 3.7%, and the maximum gas production was obtained in a shorter time (19 days) in comparison with the sample without any pretreatment (24 days). When Pleurotus was used for lignin degradation, the lignin content was reduced by 6.78%, and the maximum gas production was obtained in a much shorter time period (14 days) in comparison with the former two methods. The gas produced comprises 74 ppm of methane, which has fuel value. The sludge after digestion was tested, which indicated a marginal increase in NPK value and hence can be used as fertilizer. The results of the study appear to be quite promising in the transition towards green energy by providing scope for the process of biomethanation, with the conclusion that further research can transform coir pith into a good renewable energy resource.
Afficher plus [+] Moins [-]Experimental Investigations on the Effect of Pretreatment in Anaerobic Digestion of Coir Pith Agro Waste
2024
Smitha Krishna Warrier and P. Sindhu
The coir industry in India’s southern coastal regions, especially in the state of Kerala, is becoming increasingly concerned about the environmental impact of the accumulation and incremental increase of coir pith each year. The objective of this study was to assess the effect of pretreatment on the anaerobic digestion of coir pith. The characterization study of coir pith shows high organic content, which can be anaerobically digested to produce biogas. But, the high lignin content (30.91%) makes the process slow. To overcome this, a biological pretreatment method was tried using two microbial cultures belonging to fungal genera known to be lignin decomposers, viz., Trichoderma and Pleurotus. By using Trichoderma, lignin content was reduced by 3.7%, and the maximum gas production was obtained in a shorter time (19 days) in comparison with the sample without any pretreatment (24 days). When Pleurotus was used for lignin degradation, the lignin content was reduced by 6.78%, and the maximum gas production was obtained in a much shorter time period (14 days) in comparison with the former two methods. The gas produced comprises 74 ppm of methane, which has fuel value. The sludge after digestion was tested, which indicated a marginal increase in NPK value and hence can be used as fertilizer. The results of the study appear to be quite promising in the transition towards green energy by providing scope for the process of biomethanation, with the conclusion that further research can transform coir pith into a good renewable energy resource.
Afficher plus [+] Moins [-]Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower
2022
Younas, Hajira | Nazir, Aisha | Bareen, Firdaus-e
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0–10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Afficher plus [+] Moins [-]