Affiner votre recherche
Résultats 1-10 de 30
Contamination characteristics of energetic compounds in soils of two different types of military demolition range in China
2022
Zhang, Huijun | Zhu, Yongbing | Wang, Shiyu | Zhao, Sanping | Nie, Yaguang | Liao, Xiaoyong | Cao, Hongying | Yin, Hao | Liu, Xiaodong
The pollution of energetic compounds (ECs) in military ranges has become the focus of worldwide attention. However, few studies on the contamination of ECs at Chinese military ranges have been reported to date. In this study, two different types of military demolition range in China, Dunhua (DH) and Taiyuan (TY), were investigated and the ECs in their soils were determined. 10 ECs were detected at both ranges. While all the contamination characteristics were distinct, 2,4,6-trinitrotoluene (TNT) was the most abundant contamination source in soils at DH range, with an average concentration of 1106 mg kg⁻¹ and a maximum concentration of 34,083 mg kg⁻¹. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two mono-amino degradation products of TNT were also found to have high concentrations, with potential ecological and human health risks. In contrast, the concentrations of ECs in soils of TY range were much lower. The content of RDX was most significant, with average and maximum concentrations of 7.8 and 158 mg kg⁻¹, respectively. However, the potential threat to human health of 2,4-dinitrotoluene and 2,6-dinitrotoluene in soils at both ranges should not be ignored. The differences in pollution characteristics of the ECs at DH and TY are closely related to the types and amounts of the munitions destroyed. Moreover, the spatial distribution of ECs at the demolition ranges was extremely heterogeneous, which may be attributed to the use of open burning / open detonation and the non-homogeneous composition of the munitions.
Afficher plus [+] Moins [-]Inhibition effect of 2,4,6-trinitrotoluene (TNT) on RDX degradation by rhodococcus strains isolated from contaminated soil and water
2022
Gupta, Swati | Siebner, Hagar | Ramanathan, Gurunath | Ronen, Zeev
2,4,6-trinitrotoluene (TNT) is a highly toxic explosive that contaminates soil and water and may interfere with the degradation of co-occurring compounds, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We proposed that TNT may influence RDX-degrading bacteria via either general toxicity or a specific effect on the |RDX degradation mechanisms. Thus, we examined the impact of TNT on RDX degradation by Rhodococcus strains YH1, T7, and YY1, which were isolated from an explosives-polluted environment. Although partly degraded, TNT did not support the growth of any of the strains when used as either sole carbon or sole nitrogen sources, or as carbon and nitrogen sources. The incubation of a mixture of TNT (25 mg/l) and RDX (20 mg/l) completely inhibited RDX degradation. The effect of TNT on the cytochrome P450, catalyzing RDX degradation, was tested in a resting cell experiment, proving that TNT inhibits XplA protein activity. A dose-response experiment showed that the IC50/trans values for YH1, T7, and YY1 were 7.272, 5.098, and 9.140 (mg/l of TNT), respectively, illustrating variable sensitivity to TNT among the strains. The expression of xplA was also strongly suppressed by TNT. Cells that were pre-grown with RDX (allowing xplA expression) and incubated with ammonium chloride, glucose, and TNT, completely transformed into their amino dinitrotoluene isomers and formed azoxy toluene isomers. The presence of oxygen-insensitive nitroreductase that enable reduction of the nitro group in the presence of O2 in the genomes of these strains suggests that they are responsible for TNT transformation in the cultures. The experimental results concluded that TNT has an adverse effect on RDX degradation by the examined strains. It inhibits RDX degradation due to the direct impact on cytochrome P450, xplA, or its expression. The tested strains can transform TNT independently of RDX. Thus, degradation of both compounds is possible if TNT concentrations are below their IC50 values.
Afficher plus [+] Moins [-]Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX
2021
Yang, Xu | Lai, Jin-long | Zhang, Yu | Luo, Xue-gang | Han, Meng-wei | Zhao, San-ping
This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.
Afficher plus [+] Moins [-]Biotransformation of 2,4,6-Trinitrotoluene by Pseudomonas sp. TNT3 isolated from Deception Island, Antarctica
2020
Cabrera, Ma Ángeles | Márquez, Sebastián L. | Quezada, Carolina P. | Osorio, Manuel I. | Castro-Nallar, Eduardo | González-Nilo, Fernando D. | Pérez-Donoso, José M.
2,4,6-Trinitrotoluene (TNT) is a nitroaromatic explosive, highly toxic and mutagenic for organisms. In this study, we report for the first time the screening and isolation of TNT-degrading bacteria from Antarctic environmental samples with potential use as bioremediation agents. Ten TNT-degrading bacterial strains were isolated from Deception Island. Among them, Pseudomonas sp. TNT3 was selected as the best candidate since it showed the highest tolerance, growth, and TNT biotransformation capabilities. Our results showed that TNT biotransformation involves the reduction of the nitro groups. Additionally, Pseudomonas sp. TNT3 was capable of transforming 100 mg/L TNT within 48 h at 28 °C, showing higher biotransformation capability than Pseudomonas putida KT2440, a known TNT-degrading bacterium. Functional annotation of Pseudomonas sp. TNT3 genome revealed a versatile set of molecular functions involved in xenobiotic degradation pathways. Two putative xenobiotic reductases (XenA_TNT3 and XenB_TNT3) were identified by means of homology searches and phylogenetic relationships. These enzymes were also characterized at molecular level using homology modelling and molecular dynamics simulations. Both enzymes share different levels of sequence similarity with other previously described TNT-degrading enzymes and with their closest potential homologues in databases.
Afficher plus [+] Moins [-]Incorporation and mineralization of TNT and other anthropogenic organics by natural microbial assemblages from a small, tropical estuary
2013
2,4,6-Trinitrotoluene (TNT) metabolism was compared across salinity transects in Kahana Bay, a small tropical estuary on Oahu, HI. In surface water, TNT incorporation rates (range: 3–121 μg C L−1 d−1) were often 1–2 orders of magnitude higher than mineralization rates suggesting that it may serve as organic nitrogen for coastal microbial assemblages. These rates were often an order of magnitude more rapid than those for RDX and two orders more than HMX. During average or high stream flow, TNT incorporation was most rapid at the riverine end member and generally decreased with increasing salinity. This pattern was not seen during low flow periods. Although TNT metabolism was not correlated with heterotrophic growth rate, it may be related to metabolism of other aromatic compounds. With most TNT ring-carbon incorporation efficiencies at greater than 97%, production of new biomass appears to be a more significant product of microbial TNT metabolism than mineralization.
Afficher plus [+] Moins [-]2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments
2011
Montgomery, Michael T. | Coffin, Richard B. | Boyd, Thomas J. | Smith, Joseph P. | Walker, Shelby E. | Osburn, Christopher L.
The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO₂); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO₂ was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/−38 μg C kg⁻¹ d⁻¹). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO₂ is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments.
Afficher plus [+] Moins [-]Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water
2020
Jiang, Nan | Wang, Yuchao | Zhao, Quanlin | Ye, Zhengfang
Via the thermal sintering, a nanocrystalline IrO₂ coating was formed on the Ti substrate to successfully prepare a Ti/IrO₂ electrode. Based on the electrochemical analysis, the prepared Ti/IrO₂ electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV–vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO₂ electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO₂ function group in the TNT red water was degraded completely.
Afficher plus [+] Moins [-]Monitoring of explosive residues in lake-bottom water using Polar Organic Chemical Integrative Sampler (POCIS) and chemcatcher: determination of transfer kinetics through Polyethersulfone (PES) membrane is crucial
2019
Estoppey, Nicolas | Mathieu, Jörg | Gascon Diez, Elena | Sapin, Eric | Delémont, Olivier | Esseiva, Pierre | de Alencastro, Luiz Felippe | Coudret, Sylvain | Folly, Patrick
Between 1920 and 1967, approximatively 8200 tons of ammunition waste were dumped into some Swiss lakes. This study is part of the extensive historical and technical investigations performed since 1995 by Swiss authorities to provide a risk assessment. It aims to assess whether explosive monitoring by passive sampling is feasible in lake-bottom waters. Polar organic chemical integrative sampler (POCIS) and Chemcatcher were first calibrated in a channel system supplied with continuously refreshed lake water spiked with two nitroamines (HMX and RDX), one nitrate ester (PETN), and six nitroaromatics (including TNT). Exposure parameters were kept as close as possible to the ones expected at the bottom of two affected lakes. Sixteen POCIS and Chemcatcher were simultaneously deployed in the channel system and removed in duplicates at 8 different intervals over 21 days. Sorbents and polyethersulfone (PES) membranes were separately extracted and analyzed by UPLC-MS/MS. When possible, a three-compartment model was used to describe the uptake of compounds from water, over the PES membrane into the sorbent. Uptake of target compounds by sorbents was shown not to approach equilibrium during 21 days. However, nitroaromatics strongly accumulated in PES, thus delaying the transfer of these compounds to sorbents (lag-phase up to 9 days). Whereas sampling rate (RS) of nitroamines were in the range of 0.06–0.14 L day⁻¹, RS of nitroaromatics were up to 10 times lower. As nitroaromatic accumulation in PES was integrative over 21 days, PES was used as receiving phase for these compounds. The samplers were then deployed at lake bottoms. To ensure that exposure conditions were similar between calibration and field experiments, low-density polyethylene strips spiked with performance reference compounds were co-deployed in both experiments and dissipation data were compared. Integrative concentrations of explosives measured in the lakes confirmed results obtained by previous studies based on grab sampling.
Afficher plus [+] Moins [-]Accumulation and depuration of trinitrotoluene and related extractable and nonextractable (bound) residues in marine fish and mussels
2016
Lotufo, Guilherme R. | Belden, Jason B. | Fisher, Jonathon C. | Chen, Shou-Feng | Mowery, Richard A. | Chambliss, C Kevin | Rosen, Gunther
To determine if trinitrotoluene (TNT) forms nonextractable residues in mussels (Mytilus galloprovincialis) and fish (Cyprinodon variegatus) and to measure the relative degree of accumulation as compared to extractable TNT and its major metabolites, organisms were exposed to water fortified with 14C-TNT. After 24 h, nonextractable residues made up 75% (mussel) and 83% (fish) while TNT accounted for 2% of total radioactivity. Depuration half-lives for extractable TNT, aminodinitrotoluenes (ADNTs) and diaminonitrotoluenes (DANTs) were fast initially (<0.5 h), but slower for nonextractable residues. Nonextractable residues from organisms were identified as ADNTs and DANTs using 0.1 M HCL for solubilization followed by liquid chromatography-tandem mass spectrometry. Recovered metabolites only accounted for a small fraction of the bound residue quantified using a radiotracer likely because of low extraction or hydrolysis efficiency or alternative pathways of incorporation of radiolabel into tissue.
Afficher plus [+] Moins [-]Sequential biodegradation of TNT, RDX and HMX in a mixture
2009
Sagi-Ben Moshe, S. | Ronen, Z. | Dahan, O. | Weisbrod, N. | Groisman, L. | Adar, E. | Nativ, R.
We describe TNT's inhibition of RDX and HMX anaerobic degradation in contaminated soil containing indigenous microbial populations. Biodegradation of RDX or HMX alone was markedly faster than their degradation in a mixture with TNT, implying biodegradation inhibition by the latter. The delay caused by the presence of TNT continued even after its disappearance and was linked to the presence of its intermediate, tetranitroazoxytoluene. PCR-DGGE analysis of cultures derived from the soil indicated a clear reduction in microbial biomass and diversity with increasing TNT concentration. At high-TNT concentrations (30 and 90 mg/L), only a single band, related to Clostridium nitrophenolicum, was observed after 3 days of incubation. We propose that the mechanism of TNT inhibition involves a cytotoxic effect on the RDX- and HMX-degrading microbial population. TNT inhibition in the top active soil can therefore initiate rapid transport of RDX and HMX to the less active subsurface and groundwater. TNT and its metabolites are cytotoxic for RDX and HMX-degrading bacteria in polluted soil.
Afficher plus [+] Moins [-]