Affiner votre recherche
Résultats 1-10 de 151
Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX Texte intégral
2021
Yang, Xu | Lai, Jin-long | Zhang, Yu | Luo, Xue-gang | Han, Meng-wei | Zhao, San-ping
This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.
Afficher plus [+] Moins [-]Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality Texte intégral
2021
Wang, Gen | Wang, Li | Ma, Fang | Yang, Dongguang | You, Yongqiang
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0–120 mg kg⁻¹). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15–60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg⁻¹ Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22–117%), chlorophyll content (17–63%), antioxidant levels (SOD 10–18%, POD 9–25%, total polyphenols 17–22%, flavonoids 15–29%, and glutathione 7–61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20–27%), superoxide anion (29–36%), and hydrogen peroxide (19–30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Afficher plus [+] Moins [-]Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea Texte intégral
2021
Jeyasundar, Parimala Gnana Soundari Arockiam | Ali, Amjad | Azeem, Muhammad | Li, Yiman | Guo, Di | Sikdar, Ashim | Abdelrahman, Hamada | Kwon, Eilhann | Antoniadis, Vasileios | Mani, Vellingiri Manon | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zengqiang
Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.
Afficher plus [+] Moins [-]Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil Texte intégral
2021
Ali, Amjad | Li, Yiman | Arockiam Jeyasundar, Parimala Gnana Soundari | Azeem, Muhammad | Su, Junfeng | Fazl-i-Wahid, | Mahar, Amanullah | Shah, Muhammad Zahir | Li, Ronghua | Zhang, Zengqiang
Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg⁻¹ in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil β-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5–55.6%. Soil bacterial communities’ distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.
Afficher plus [+] Moins [-]Improved soil-crop system management aids in NH3 emission mitigation in China Texte intégral
2021
Sha, Zhipeng | Liu, Hejing | Wang, Jingxia | Ma, Xin | Liu, Xuejun | Misselbrook, T. (Tom)
High ammonia (NH₃) emissions from fertilized soil in China have led to various concerns regarding environmental safety and public health. In response to China's blue skies protection campaign, effective NH₃ reduction measures need to consider both mitigation efficiency and food security. In this context, we conducted a meta-analysis (including 2980 observations from 447 studies) to select effective measures based on absolute (AV) and yield-scaled (YSAV) NH₃ volatilization reduction potential, with the aim of establishing a comprehensive NH₃ mitigation framework covering various crop production sectors, and offering a range of potential solutions. The results showed that manipulating crop density, using an intermittent irrigation regime for paddy field rice, applying N as split applications or partially substituting inorganic fertilizer N with organic N sources could achieve reductions in AV and YSAV reduction of 10–20 %; adopting drip irrigation regimes, adding water surface barrier films to paddy fields, or using double inhibitor (urease and nitrification), slow-release or biofertilizers could achieve 20–40 % mitigation; plastic film mulching, applying fertilizer by irrigation or using controlled-release fertilizers could yield 40–60 % reduction; use of a urease inhibitor, fully substituting fertilizer N with organic N, or applying fertilizer by deep placement could decrease AV and YSAV by over 60 %. In addition, use of soil amendments, applying suitable inorganic N sources, or adopting crop rotation, intercropping or a rice-fish production model all had significant benefits to control AV. The adoption of any particular strategy should consider local accessibility and affordability, direct intervention by local/government authorities and demonstration to encourage the uptake of technologies and practices, particularly in NH₃ pollution hotspot areas. Together, this could ensure food security and environmental sustainability.
Afficher plus [+] Moins [-]Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China Texte intégral
2020
Liu, Yufei | Fan, Xiaoxu | Zhang, Tong | He, Wenyuan | Song, Fuqiang
Atrazine has been used on Chinese farmlands for a long time and over a wide range. The concentration of atrazine (1.86–1100 mg kg⁻¹) has exceeded the allowable limit in the soil (1.0 mg kg⁻¹), and concern is increasing about the potential harm to farmland soil. Four treatments (AT₀, AT₆, AT₁₀, AT₁₆) were established to reveal the effects of the long-term application of atrazine on soil health. The results showed a nonlinear regulation of the atrazine residue concentrations in the four treatments. The highest concentration of atrazine residue was in AT₆, at 167 mg kg⁻¹, and the lowest concentration of atrazine residue was in AT₁₆, at 102 mg kg⁻¹, but there was no significant difference between AT₁₀ and AT₁₆. The soil urease activity decreased significantly with the increase in the years of atrazine application, the saccharase and cellulase activities in the AT₆ were significantly higher than those observed in the other three treatments, the catalase activity gradually decreased with the increase in atrazine application years, and the activity in AT₆ was significantly higher than that in AT₁₆. A total of 238 genera were identified by Illumina MiSeq sequencing, and 28 dominant genera were screened. Atrazine significantly increased the relative abundance of Actinobacteria and contributed to the relative abundance of Rubrobacter, Blastococcus, Promicromonospora, Jiangella, Psychroglaciecola and Acetobacteraceae_uncultured, which exhibited significantly higher abundance in AT₁₆ than in AT₀. Although there were atrazine-degrading bacteria in the soil, and the atrazine residue decreased with the increase in application years, the concentration of the atrazine residue was still nearly 100 times higher than the allowable limit in the soil, which is a great threat to the soil health.
Afficher plus [+] Moins [-]Elevated CO2 mitigates the negative effect of CeO2 and Cr2O3 nanoparticles on soil bacterial communities by alteration of microbial carbon use Texte intégral
2020
Luo, Jipeng | Song, Yuchao | Liang, Jiabin | Li, Jinxing | Islam, Ejazul | Li, Tingqiang
The interactive effects of elevated atmospheric CO₂ and nanoparticles (NPs) on the structure and function of soil bacterial community remain unknown. Here we compared the impacts of CeO₂ (nCeO₂) and Cr₂O₃ (nCr₂O₃) nanoparticles on the taxonomic compositions and functional attributes of bacterial communities under elevated CO₂ (eCO₂). The stimulated enzyme activities (dehydrogenase, acid phosphatase and urease), increased microbial biomass carbon (MBC), and higher bacterial alpha-diversity were observed under the combined effects of eCO₂ and NPs compared to the single NP treatment, indicating eCO₂ could mitigate the adverse effect of NPs on soil microorganisms. NPs and eCO₂ are important factors influencing the alpha- and beta-diversity (17% and 18% of variations were explained) as well as functional profile (20% and 26% of variations were explained) of bacterial communities. Rising CO₂ level promoted the resilience of NP-resistant bacterial populations, primarily the members of Alphaproteobacteria, Gammaproteobacteria and Bacteroidia, which are also characterized by the fast carbon use capability. Moreover, the significantly (P < 0.05) higher metabolic quotient (qCO₂), reduced available carbon and overrepresented carbon metabolism genes at eCO₂vs. ambient CO₂ (aCO₂) indicate the acceleration of available carbon turnover in NP-exposed soils. Correlation analysis revealed that mitigation of NPs toxicity by eCO₂ could be attributed to the remarkable decline of bioavailable metals disassociated from NPs and available carbon level, as well as promotion of the rapid carbon-metabolizing microbes. Our study pointed out the positive role of eCO₂ in alleviating the adverse effect of NPs on microbiological soil environment, and results can serve as important basis in establishing guidelines for lowering the ecotoxicity of NPs.
Afficher plus [+] Moins [-]Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level Texte intégral
2020
Yu, Hong | Fan, Ping | Hou, Junhua | Dang, Qiuling | Cui, Dongyu | Xi, Beidou | Tan, Wenbing
Microplastics (MPs), as a new type of environmental pollutant, pose a serious threat to soil ecosystems. The activities of soil extracellular enzymes produced by microorganisms are the potential sensitive indicators of soil quality. However, little is known about the response mechanism of enzyme activities toward MPs on a long-term scale. Moreover, information on differences in enzyme activities across different soil aggregates is lacking. In this study, 150 days of incubation experiments and soil aggregate fractionation were combined to investigate the influence of MPs on extracellular enzyme activities in soil. 28% concentration of polyethylene with size 100 μm was adopted in the treatments added with MPs. The results show that MPs inhibited enzyme activities through changing soil nutritional substrates and physicochemical properties or through adsorption. Moreover, MPs competed with soil microorganisms for physicochemical niches to reduce microbial activity and eventually, extracellular enzyme activity. Enzyme activities in different aggregate-size fractions responded differently to the MPs exposure. The catalase in the coarse particulate fraction and phenol oxidase and β-glucosidase in the micro-aggregate fraction exerted the greatest response. With comparison, urease, manganese peroxidase, and laccase activities showed the greatest responses in the non-aggregated silt and clay fraction. These observations are believed to stem from differences in the key factors determining the enzyme activities in different aggregate-size fractions.The inhibitory pathway of microplastics on activities of extracellular enzymes in soil varies significantly across different aggregate fractions.
Afficher plus [+] Moins [-]Effect of perfluorooctanoic acid on microbial activity in wheat soil under different fertilization conditions Texte intégral
2020
Chen, Huilun | Wang, Qianyu | Cai, Yanping | Yuan, Rongfang | Wang, Fei | Zhou, Beihai | Chen, Zhongbing
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant which has been identified at significant levels in soils. Existed ecotoxicological studies have mainly employed earthworms to evaluate the toxicity of PFOA. However, little information do we know about the toxicity of PFOA regarding soil microorganisms. Accordingly, the adverse effects of PFOA on microbial activity in a wheat soil under four fertilization treatments were investigated in this study. The microcalorimetric results revealed that the toxicity of PFOA on soil microbial activity in four treatments followed a descending sequence: Control (no fertilization), NK (no P fertilizer, but N and K fertilizers were used), PK (no N fertilizer, but P and K fertilizers were used), and NPK (N, P and K fertilizers were used). The soil sample with higher available P content had higher resistant to PFOA. There were significant differences in urease activity and alkaline phosphatase activity among the four fertilization treated soils. Molecular modeling studies clearly demonstrated that the binding of PFOA with alkaline phosphatase was more stable than with urease through electrostatic interaction, van der Waals force, and hydrogen bonds. These results are expected to provide more comprehensive information in toxicity of PFOA in soil environment.
Afficher plus [+] Moins [-]LDPE microplastic films alter microbial community composition and enzymatic activities in soil Texte intégral
2019
Huang, Yi | Zhao, Yanran | Wang, Jie | Zhang, Mengjun | Jia, Weiqian | Qin, Xiao
Concerns regarding microplastic contamination have spread from aquatic environments to terrestrial systems with a growing number of studies have been reported. Notwithstanding, the potential effects on soil ecosystems remain largely unexplored. In this study, the effects of polyethylene microplastics on soil enzymatic activities and the bacterial community were evaluated, and the microbiota colonizing on microplastics were also investigated. Microplastic amendment (2000 fragments per kg soil) significantly increased the urease and catalase activities in soil after 15 days, and no discernible alteration of invertase activities was detected. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversities (richness, evenness, and diversity) of the microbiota in soil were not obviously changed by the PE amendment, whereas the diversity indexes of microbiota on plastic fragments were significantly lower than those in the control and amended soils. Different taxonomic composition was observed in between the control and amended soils after 90 days of incubation. Bacterial assemblages with distinct community structure colonized the PE microplastics. Additionally, several taxa including plastic-degrading bacteria and pathogens were more abundant on microplastics. Simultaneously, the predicted functional profiles showed that the pathways of amino acid metabolism and xenobiotics biodegradation and metabolism were higher on the microplastics. These results indicated that microplastics in soil, compared with those in aquatic environments, can also act as a distinct microbial habitat, potentially altering the ecological functions of soil ecosystems.
Afficher plus [+] Moins [-]