Affiner votre recherche
Résultats 1-10 de 72
Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China Texte intégral
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
Afficher plus [+] Moins [-]Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from industrial combustion of biomass fuels Texte intégral
2022
Zhang, Chunlin | Bai, Li | Yao, Qian | Li, Jiangyong | Wang, Hao | Shen, Liran | Sippula, Olli | Yang, Jun | Zhao, Jinping | Liu, Jun | Wang, Boguang
Although biomass fuel has always been regarded as a source of sustainable energy, it potentially emits polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study investigated PCDD/F emissions from industrial boilers fired with three types of biomass fuel (i.e., bagasse, coffee residue, and biomass pellets) via stack sampling and laboratory analysis. The measured mass concentrations of PCDD/Fs varied among the boilers from 0.0491 to 12.7 ng Nm⁻³ (11% O₂), with the calculated average international toxic equivalent quantity (I-TEQ) from 0.00195 to 1.71 ng I-TEQ Nm⁻³ (11% O₂). Some of them were beyond the limit value for municipal waste incineration. 2,3,4,7,8-PeCDF could be used as a good indicator of dioxin-induced toxicity of stack flue gases from biomass-fired boilers. The PCDFs/PCDDs ratios were more than 1, likely indicating the formation of dioxins in the boilers favored by de novo synthesis. The emission factor (EF) of total PCDD/Fs averaged 5.35 ng I-TEQ kg⁻¹ air-dry biomass (equivalent to 39.0 ng kg⁻¹ air-dry biomass). Specifically, the mean EF was 6.94 ng I-TEQ kg⁻¹ (52.6 ng kg⁻¹) for biomass-pellet-fired boiler, 11.8 ng I-TEQ kg⁻¹ (74.6 ng kg⁻¹) for coffee-residue -fired boiler, and 0.0277 ng I-TEQ kg⁻¹ (0.489 ng kg⁻¹) for bagasse-fired boilers. The annual PCDD/F emission was estimated to be 208 g I-TEQ in 2020 in China, accounting for approximately 2% of the total national annual emission of PCDD/Fs. The results can be used to develop PCDD/Fs emission inventories and offer valuable insights to authorities regarding utilizing biomass in industry in the future.
Afficher plus [+] Moins [-]PCDD/Fs and heavy metals in the vicinity of landfill used for MSWI fly ash disposal: Pollutant distribution and environmental impact assessment Texte intégral
2022
Lin, Xiaoqing | Ma, Yunfeng | Chen, Tong | Wang, Lei | Takaoka, Masaki | Pan, Shuping | Zhang, Hao | Wu, Angjian | Li, Xiaodong | Yan, Jianhua
This study focused on the syngenetic control of polychlorinated-ρ-dibenzodioxins and dibenzofurans (PCDD/Fs) and heavy metals by field stabilization/solidification (S/S) treatment for municipal solid waste incineration fly ash (MSWIFA) and multi-step leachate treatment. Modified European Community Bureau of Reference (BCR) speciation analysis and risk assessment code (RAC) revealed the medium environment risk of Cd and Mn, indicating the necessity of S/S treatment for MSWIFA. S/S treatment significantly declined the mass/toxic concentrations of PCDD/Fs (i.e., from 7.21 to 4.25 μg/kg; from 0.32 to 0.20 μg I-TEQ/kg) and heavy metals in MSWIFA due to chemical fixation and dilution effect. The S/S mechanism of sodium dimethyldithiocarbamate (SDD) and cement was decreasing heavy metals in the mild acid-soluble fraction to reduce their mobility and bioavailability. Oxidation treatment of leachate reduced the PCDD/F concentration from 49.10 to 28.71 pg/L (i.e., from 1.60 to 0.98 pg I-TEQ/L) by suspension absorption or NaClO oxidation decomposition, whereas a so-called “memory effect” phenomena in the subsequent procedures (adsorption, press filtration, flocculating settling, slurry separation, and carbon filtration) increased it back to 38.60 pg/L (1.66 pg I-TEQ/L). Moreover, the multi-step leachate treatment also effectively reduced the concentrations of heavy metals to 1–4 orders of magnitude lower than the national emission standards. Furthermore, the PCDD/Fs and heavy metals in other multiple media (soil, landfill leachate, groundwater, and river water) and their spatial distribution characteristics site were also investigated. No evidence showed any influence of the landfill on the surrounding liquid media. The slightly higher concentration of PCDD/Fs in the soil samples was ascribed to other waste management processes (transportation and unloading) or other local source (hazardous incineration plant). Therefore, proper management of landfills and leachate has a negligible effect on the surrounding environment.
Afficher plus [+] Moins [-]Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in soil around municipal solid waste incinerator: A comparison with polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) Texte intégral
2022
Song, Aimin | Li, Huiru | Liu, Mingyang | Peng, Ping'an | Hu, JianFang | Sheng, Guoying | Ying, Guangguo
Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) share similar toxicities and thermal origins, e.g., municipal solid waste incinerator (MSWI). Recently, PBDD/Fs from MSWI attracted rising concern because their important precursors, i.e., brominated flame retardants (BFRs), were frequently found in various wastes for landfill or MSWI feedstock. So far, however, little is known about PBDD/Fs and their associated risks in the vicinal environments of MSWI. Here we analyzed PBDD/Fs and PCDD/Fs in 29 soil samples collected around a multiyear large-scale MSWI, and compared their spatial distributions, sources and risks. PBDD/Fs demonstrated comparable concentrations and toxic equivalent quantities (TEQs) to PCDD/Fs in these samples. Spatially, both the concentrations of PBDD/Fs and PCDD/Fs decreased outwards from the MSWI, and exhibited significant linear correlations with the distances from the MSWI in the southeast downwind soil, suggesting the influence of the MSWI on its vicinal soil environment. However, the existence of other dioxin sources concealed its influence beyond 6 km. PBDD/Fs in the soils were characterized by highly-brominated PBDFs, especially Octa-BDF, and their sources were diagnosed as the MSWI and diesel exhaust; PCDD/Fs, however, were dominated by highly-chlorinated PCDDs, particularly Octa-CDD, and were contributed individually or jointly by the MSWI, automobile exhaust and pentachlorophenol (PCP)/Na-PCP. The non-carcinogenic risks of dioxins in all the soil samples were acceptable, but their carcinogenic risks in 17% of the samples were unacceptable. These samples were all located close to the MSWI and highways, therefore, the land use of these two high-risk zones should be cautiously planed.
Afficher plus [+] Moins [-]Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans in raw and treated water from water treatment plants in Shenzhen, China Texte intégral
2016
Lu, Feina | Jiang, Yousheng | Wu, Dongting | Zhou, Jian | Li, Shengnong | Zhang, Jianqing
Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) were analyzed for the first time in raw and treated water from five water treatment plants in Shenzhen, South China. The average PCDD/Fs concentrations were 32.93 pg/L (0.057 pg international toxic equivalent quantity (I-TEQ)/L) and 0.64 pg/L (0.021 pg I-TEQ/L) in raw and treated water, respectively. The removal rate of PCDD/Fs in terms of mass concentration varied from 93.4% to 98.8%, whereas a negative removal rate was observed in one plant in terms of TEQ concentration. The PCDD/Fs concentration in raw water was lower than most of the published data from other countries and regions, and the PCDD/Fs concentration in treated water was below the Maximum Contaminants Level (MCL) of 30 pg/L for dioxin in drinking water set by the US EPA. Historical pentachlorophenol usage, local waste incineration and industrial emissions, as well as surface runoff or even soil erosion, might be the main sources for PCDD/F pollution in water. The daily intake of PCDD/Fs for local residents from drinking water was estimated to be 0.69 fg I-TEQ/kg/day, which is negligible compared with that from food consumption (1.23 pg WHO-TEQ/kg/day) in the local area.
Afficher plus [+] Moins [-]Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review Texte intégral
2022
Shunda lin, | Jiang, Xuguang | Zhao, Yimeng | Yan, Jianhua
Incineration has gradually become the most effective way to deal with MSW due to its obvious volume reduction and weight reduction effects. However, since heavy metals and organic pollutants carried by municipal solid waste incinerator fly ash (MSWI FA) pose a serious threat to the ecological environment and human health, they need to be handled carefully. In this study, the current status of MSWI FA disposal was first reviewed, and the harmless and resourceful disposal technologies of heavy metals and organic pollutants in MSWI FA are summarized as well. A summary of the advantages and disadvantages of each technology, including sintering, melting/vitrification, hydrothermal treatment, mechanochemistry, solidification/stabilization of MSWI FA, is compared. Finally, the research work that needs to be strengthened in the future (such as codisposal of multiple wastes, long-term stability research of disposal products, etc.) was proposed. Through comprehensive analysis, some reasonable and feasible suggestions were provided for the effective and safe disposal of MSWI FA in the future.
Afficher plus [+] Moins [-]Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures Texte intégral
2021
Thind, Parteek Singh | Sareen, Arjun | Singh, Dapinder Deep | Singh, Sandeep | John, Siby
COVID-19 induced pandemic situations have put the bio-medical waste (BMW) management system, of the world, to test. Sudden influx, of COVID-infected patients, in health-care facilities, has increased the generation of yellow category BMW (Y-BMW) and put substantial burden on the BMW-incineration units of India. This study presents the compromising situation of the BMW-incineration units of India, in the wake of COVID-19 pandemic, from 21st March 2020 to 31st August 2020. This analysis revealed that on an average each COVID-infected patient in India generates approximately 3.41 kg/d of BMW and average proportion of Y-BMW in it is 50.44%. Further, it was observed that on 13th July 2020, the total Y-BMW, generated by both the normal and COVID-infected patients, fully utilized the BMW-incineration capacity of India. Also, it was made evident that, during the study period, BMW-incineration emitted several pollutants and their concentration was in the order: NOₓ > CO > SOₓ > PM > HCl > Cd > Pb > Hg > PCBs > Ni > Cr > Be > As. Subsequently, life time cancer risk assessment depicted that with hazard quotient >10⁻⁶, Cd may induce carcinogenic health impacts on both the adults and children of India. Therefore, to mitigate the environmental-health impacts associated with the incineration of BMW, evaluation of various options, viz., alternative technologies, substitution of raw materials and separate treatment of specific wastes, was also done. It is expected that the findings of this study may encourage the global auditory comprising scientific community and authorities to adopt alternate BMW-management strategies during the pandemic.
Afficher plus [+] Moins [-]In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes Texte intégral
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
Afficher plus [+] Moins [-]Explaining social acceptance of a municipal waste incineration plant through sociodemographic and psycho-environmental variables Texte intégral
2020
Subiza-Pérez, Mikel | Marina, Loreto Santa | Irizar, Amaia | Gallastegi, Mara | Anabitarte, Asier | Urbieta, Nerea | Babarro, Izaro | Molinuevo, Amaia | Vozmediano, Laura | Ibarluzea, Jesús
Municipal waste incineration plants (MWIPs) are a source of emission of diverse pollutants that have been associated with environmental and health effects, mainly in relation to premises that are old and not well equipped or maintained. As a result, the public usually holds a negative view of such plants and tends to react adversely to construction of new plants. Understanding a population’s perceptions is key to ensuring the correct development of such infrastructure and adequately managing population health concerns and behaviours. In this study, we surveyed 173 residents living close (≤ 10 km) to an MWIP being built in San Sebastian (Gipuzkoa, Spain) and 164 living further away (>10 km). The questionnaire included sociodemographic and psycho-environmental measures. Answers to the questionnaire revealed a fairly low acceptance rate and the perception of a high risk for human health and the environment (average scores of 0.57, 3.07 and 2.89 respectively in a 0 to 4 scale), with no statistically significant differences between people living nearby and further afield. A hierarchical regression model built to explore the public’s acceptance of the MWIP explained 59% of the variance. Dominance and relative weight analyses revealed that the most important predictors of acceptance were trust in the information provided by the local government and perceived risk for human health, which accounted for 33.7% and 27.4% of the variance explained by the model respectively. Preference for landfilling and MWIP acceptance in a farther location made a less relevant contribution.
Afficher plus [+] Moins [-]Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals Texte intégral
2020
Borysov, Arsenii | Tarasenko, Alla | Krisanova, Natalia | Pozdnyakova, Natalia | Pastukhov, Artem | Dudarenko, Marina | Paliienko, Konstantin | Borisova, Tatiana
Smoke from plastic waste incineration in an open air travels worldwide and is a major source of air pollution particulate matter (PM) that is very withstand to degradation and hazard to human health. Suspension of smoke aerosol components in water occurs during rains and fire extinguishing. Here, water-suspended plastic smoke aerosol (WPS) preparations suitable for biotesting were synthesized. It has been revealed using dynamic light scattering that WPS contained major nano-sized (∼30 nm) PM fraction, and this result was confirmed by electron microscopy. Optical absorption of WPS was in the UV region and an increase in λₑₓ led to a red-shift in fluorescence emission with a corresponding decrease in fluorescence intensity. WPS was analyzed in neurotoxicity studies in vitro using presynaptic rat cortex nerve terminals (synaptosomes). Generation of spontaneous reactive oxygen species (ROS) detected using fluorescent dye 2′,7-dichlorofluorescein in nerve terminals was decreased by WPS (10–50 μg/ml) in a dose-dependent manner. WPS also reduced the H₂O₂-evoked ROS production in synaptosomes, thereby influencing cellular oxidative processes and this effect was similar to that for carbon nanodots. WPS (0.1 mg/ml) decreased the synaptosomal membrane potential and synaptic vesicle acidification in fluorimetric experiments. WPS (1.0 mg/ml) attenuated the synaptosomal transporter-mediated uptake of excitatory and inhibitory neurotransmitters, L-[¹⁴C]glutamate and [³H]GABA, respectively. This can lead to an excessive increase in the glutamate concentration in the synaptic cleft and neurotoxicity via over activation of ionotropic glutamate receptors. Therefore, WPS was neurotoxic and provoked presynaptic malfunction through changes of oxidative activity, reduction of the membrane potential, synaptic vesicle acidification, and transporter-mediated uptake of excitatory and inhibitory neurotransmitters in nerve terminals. In summary, synthesis and emission to the environment of ultrafine PM occur during combustion of plastics, thereby polluting air and water resources, and possibly triggering development of neuropathologies.
Afficher plus [+] Moins [-]