Affiner votre recherche
Résultats 1-10 de 67
AOX contamination in Hangzhou Bay, China: Levels, distribution and point sources
2018
Xie, Ya-Wei | Chen, Lu-Jun | Liu, Rui | Tian, Jin-Ping
The parameter AOX (adsorbable organic halogens) indicates the total amount of organic halogens in an environment. Seawater and surface sediment samples from 12 sample sites in the Hangzhou Bay (HZB), China, were analyzed for AOX to investigate its contamination status. In this study, the AOX concentration ranged from 140.6 ± 45.6 μg/L to 716.1 ± 62.3 μg/L in seawater of the HZB, and from 11.3 ± 2.4 mg/kg to 112.7 ± 7.2 mg/kg in the sediment. Ocean currents, fluvial currents and the Yangtze River exerted profound influences on the distribution of AOX in the HZB. The point sources around the HZB, represented by wastewater treatment plants, discharged at least 645.4 t AOX into the HZB every year, most of which was generated by industrial activities rather than the human daily activities.
Afficher plus [+] Moins [-]Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China
2016
Zhen, Xiaomei | Tang, Jianhui | Xie, Zhiyong | Wang, Runmei | Huang, Guopei | Zheng, Qian | Zhang, Kai | Sun, Yongge | Tian, Chongguo | Pan, Xiaohui | Li, Jun | Zhang, Gan
The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g−1 dw and 1.13–49.9 ng g−1 dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g−1 dw and 0.05–7.82 ng g−1 dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the ∑PBDEs and ∑aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea.
Afficher plus [+] Moins [-]Plastics and microplastics on recreational beaches in Punta del Este (Uruguay): Unseen critical residents?
2016
Lozoya, J.P. | Teixeira de Mello, F. | Carrizo, D. | Weinstein, F. | Olivera, Y. | Cedrés, F. | Pereira, M. | Fossati, M.
Beaches are social-ecological systems that provide several services improving human well-being. However, as one of the major coastal interfaces they are subject to plastic pollution, one of the most significant global environmental threats at present. For the first time for Uruguayan beaches, this study assessed and quantified the accumulation of plastic and microplastic debris on sandy beaches of the major touristic destination Punta del Este during the austral spring of 2013. Aiming to provide valuable information for decision-making, we performed a detailed analysis of plastic debris, their eventual transport pathways to the coast (from land and sea), and the associated persistent pollutants. The results indicated that the smallest size fractions (<20 mm) were the dominant size range, with fragments and resin pellets as types with the highest number of items. PAHs and PCBs were found in plastic debris, and their levels did not differ from baseline values reported for similar locations. The abundance of plastic debris was significantly and positively correlated with both the presence of possible land-based sources (e.g. storm-water drains, beach bars, beach access, car parking, and roads), and dissipative beach conditions. The analysis of coastal currents suggested some potential deposition areas along Punta del Este, and particularly for resin pellets, although modeling was not conclusive. From a local management point of view, the development and use of indices that allow predicting trends in the accumulation of plastic debris would be critically useful. The time dimension (e.g. seasonal) should also be considered for this threat, being crucial for locations such as Uruguay, where the use of beaches increases significantly during the summer. This first diagnosis aims to generate scientific baseline, necessary for improved management of plastic litter on beaches and their watersheds.
Afficher plus [+] Moins [-]Biogeochemical malfunctioning in sediments beneath a deep-water fish farm
2012
Valdemarsen, Thomas | Bannister, Raymond J. | Hansen, Pia K. | Holmer, Marianne | Ervik, Arne
We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO₂ and O₂ and >2000 times for NH₄ ⁺, when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m⁻² d⁻¹ POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts.
Afficher plus [+] Moins [-]Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf
2019
Liu, Ming | Chen, Jingbo | Sun, Xueshi | Hu, Zhizhou | Fan, Dejiang
The concentration and speciation of heavy metals (Cu, Co, Ni, Zn, Cr, Pb and Cd) were studied in surface sediment from the Yangtze River(YR)to the East China Sea (ECS) shelf. The results showed that high contents of metals were found in the YR estuary (YRE) and in the nearshore muddy area, while lower concentrations were found in the YR channel and the ECS shelf. However, after standardization, the total content of most heavy metals from the YR showed little change or slightly increased during the transport process from the river to the estuary but decreased significantly outside the estuary, especially in the sediments of the ECS shelf. The residual fraction is the dominant fraction for all the metals, while the oxidizable and reducible fractions are the most important forms of the nonlithogenic fractions. The total amount of heavy metals from the YR to the continental shelf is mainly affected by the filtration of the estuary and the barrier impacts of the coastal current in the ECS. The environmental physicochemical conditions that vary significantly in the turbidity zone greatly influence the associated forms of metals. The metals in the acid-soluble fraction are mostly affected by the pH change in the sediment and the discharge of human activities, while the reducible fraction is significantly affected by the bottom water DO. The oxidizable fraction was affected by oxidation-reduction potential (ORP), primary productivity, as well as OM content. Therefore, with changes in the physicochemical conditions of the environment, the metals have undergone significant changes in their speciation from the YR to the ECS shelf. Various complex effects in the estuary area have not only a large filtration effect on the total amount of metals but also a major impact on the geochemical forms of the metals.
Afficher plus [+] Moins [-]Tidal influence on the distribution of hydrophobic organic contaminants in the Seine Estuary and biomarker responses on the copepod Eurytemora affinis
2009
Cailleaud, K. | Forget-Leray, J. | Peluhet, L. | LeMenach, K. | Souissi, S. | Budzinski, H.
To elucidate tidally related variations of hydrophobic organic contaminant (HOC) bioavailability and the impact of these contaminants on estuarine ecosystems, both PCB and PAH concentrations were investigated in the dissolved phase and in the suspended particulate material (SPM) of the Seine Estuary. Both PAH and PCB highest levels were observed in surface and bottom water when SPM remobilizations were maximum, in relation to higher speed currents. In parallel, acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities were investigated in the copepod Eurytemora affinis. Significant decreasing AChE levels were measured during the tidal cycle and between surface and bottom copepods related to salinity and to HOC concentration variations. Significant increasing GST levels were also observed when HOC concentrations in the water column were the highest. This study underlined the need to standardize sampling procedures for biomonitoring studies in order to avoid interfering factors that could modify biomarker responses to chemical exposure. Variations of contamination of E. affinis and enzymatic responses have been studied over a tide cycle in view to improve the use of this copepod for biomonitoring.
Afficher plus [+] Moins [-]The detection of Fukushima-derived radiocesium in the Bering Sea and Arctic Ocean six years after the nuclear accident
2020
Huang, Dekun | Lin, Jing | Du, Jinzhou | Yu, Tao
After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, radionuclides released by this event were observed in the Pacific Ocean. Models predicted that these radionuclides would be transported to the Bering Sea; however, limited evidence currently reveals the transportation of these radionuclides to the Arctic Ocean. Here, we provide the first direct observation showing that FDNPP-derived 134Cs and 137Cs were present in subarctic regions and the Arctic Ocean (Chukchi Sea) in 2017. Furthermore, we conclude that these radionuclides were transported from the Pacific Ocean into the Bering and Chukchi Seas by ocean currents. Additionally, the 137Cs activity concentrations in the Bering Sea exceed those in all previous reports. Due to the continuous leaking of radionuclides from the FDNPP, we hypothesize that FDNPP-derived radionuclides will be continuously transported to the Arctic Ocean in the next several years. Our results suggest that though far away from Fukushima, the accident-derived anthropogenic radionuclides also influenced the Arctic Ocean by ocean currents.
Afficher plus [+] Moins [-]Denitrification and anammox: Understanding nitrogen loss from Yangtze Estuary to the east China sea (ECS)
2019
Wang, Jing | Kan, Jinjun | Qian, Gang | Chen, Jianfang | Xia, Zhiqiang | Zhang, Xiaodong | Liu, Haijiao | Sun, Jun
The Yangtze River, which is the largest in Euro-Asian, receives tremendous anthropogenic nitrogen input and is typically characterized by severe eutrophication and hypoxia. Two major processes, denitrification and anaerobic ammonium oxidation (anammox), play vital roles for removing nitrogen global in nitrogen cycling. In the current study, sediment samples were collected from both latitudinal and longitudinal transects along the coastal Yangtze River and the East China Sea (ECS). We investigated community composition and distributions of nosZ gene-encoded denitrifiers by high throughput sequencing, and also quantified the relative abundances of both denitrifying and anammox bacteria by q-PCR analysis. Denitrifying communities showed distinct spatial distribution patterns that were impacted by physical (water current and river runoffs) and chemical (nutrient availability and organic content) processes. Both denitrifying and anammox bacteria contributed to the nitrogen removal in Yangtze Estuary and the adjacent ECS, and these two processes shifted from coastal to open ocean with reverse trends: the abundance of nosZ gene decreased from coastal to open ocean while anammox exhibited an increasing trend based on quantifications of hzsB and 16S rRNA genes. Further correspondence correlation analysis revealed that salinity and nutrients were the main factors in structuring composition and distribution of denitrifying and anammox bacteria. This study improved our understanding of dynamic processes in nitrogen removal from estuarine to open ocean. We hypothesize that denitrification is the major nitrogen removal pathway in estuaries, but in open oceans, low nutrient and organic matter concentrations restrict denitrification, thus increasing the importance of anammox as a nitrogen removal process.
Afficher plus [+] Moins [-]Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: On-board passive sampling coupled with target and non-target analysis
2019
Gao, Xiaozhong | Huang, Peng | Huang, Qinghui | Rao, Kaifeng | Lu, Zhibo | Xu, Yiping | Gabrielsen, Geir Wing | Hallanger, Ingeborg | Ma, Mei | Wang, Zijian
Organic pollutants in the Arctic seas have been of concern to many researchers; however, the vast dynamic marine water poses challenges to their comprehensive monitoring within appropriate spatial and temporal scales in the Arctic. In this study, on-board passive sampling of organic pollutants using a self-developed device coupled with triolein-embedded cellulose acetate membranes (TECAMs) was performed during an Arctic cruise. The TECAM extracts were used for target analysis of organophosphorus flame retardants (PFRs), and non-target screening of persistent, bioaccumulative, and toxic (PBT) contaminants using two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS). Sixteen chemicals were screened out as PBT contaminants from the 1500 features in the non-target analysis and further identified. Consequently, two chlorinated PFRs (tris(chloroisopropyl)phosphate and tris(1,3-dichloroisopropyl)phosphate) and four PBT contaminants (4-tert-butylphenol, 2-isopropylnaphthalene, 1,1,3-trimethyl-3-phenylindane, and 1-phenylnonan-1-one) were accurately quantified, with the temporally and spatially integrated concentrations ranging from 0.83 ng L⁻¹ to 20.82 ng L⁻¹ in the seawaters. Sources and transport of the contaminants were studied, and ocean current transport (West Spitsbergen Current, WSC) and local sources (human settlement, Arctic oil exploitation, and petroleum fuel emissions) were found to contribute to the presence of the different contaminants. Finally, annual transport fluxes of the contaminants from the North Atlantic to the Arctic Ocean by WSC were estimated, and the results indicate that their hazard to the Arctic should be concerned.
Afficher plus [+] Moins [-]Anthropogenic 129I in the sediment cores in the East China sea: Sources and transport pathways
2019
Zhao, Xue | Hou, Xiaolin | Du, Jinzhou | Fan, Yukun
With the increased numbers of nuclear power plants constructed along the east coast of China, it is important to know radioactive sources and transport pathways between land and sea, in order to better understand the impact of these nuclear facilities to the marine environment. Two sediment cores collected from the East China Sea dated to 1959–2010 were analyzed for long-lived radioactive 129I and stable 127I. It was observed that 129I levels (129I/127I ratio of (15.0–75.0) × 10−12) were significantly increased compared to the pre-nuclear value (129I/127I = 1.5 × 10−12). Some 129I peaks were observed in layers of 1959, 1966, 1971 and 1976 (1977), corresponding to the atmospheric nuclear weapon tests at Pacific Proving Grounds and Lop Nor. The high values of 129I after the late 1970s are attributed to the releases from the European reprocessing plants. In addition to ocean current transport, the atmospheric dispersion through the interaction of the Westerlies with East Asia monsoon is the important pathway of large-scale transport of pollutants from high latitude West Europe to middle latitude East Asia. Riverine input is the main transport pathway of radioactive pollutants released from Lop Nor to the East China Sea through the atmospheric dispersion, deposition and runoff processes.
Afficher plus [+] Moins [-]