Affiner votre recherche
Résultats 1-10 de 144
De facto reuse at the watershed scale: Seasonal changes, population contributions, instream flows and water quality hazards of human pharmaceuticals Texte intégral
2021
Švecová, Helena | Grabic, Roman | Grabicová, Kateřina | Vojs Staňová, Andrea | Fedorova, Ganna | Cerveny, Daniel | Turek, Jan | Randák, Tomáš | Brooks, Bryan W.
With increasing population growth and climate change, de facto reuse practices are predicted to increase globally. We investigated a longitudinal gradient within the Uhlava River, a representative watershed, where de facto reuse is actively occurring, during Fall and Spring seasons when instream flows vary. We observed human pharmaceutical levels in the river to continuously increase from the mountainous areas upstream to downstream locations and a potable intake location, with the highest concentrations found in small tributaries. Significant relationship was identified between mass flow of pharmaceuticals and the size of human populations contributing to wastewater treatment plant discharges. Advanced ozonation and granular activated carbon filtration effectively removed pharmaceuticals from potable source waters. We observed a higher probability of encountering a number of targeted pharmaceuticals during colder Spring months when stream flows were elevated compared to warmer conditions with lower flows in the Fall despite a dilution paradigm routinely applied for surface water quality assessment and management efforts. Such observations translated to greater water quality hazards during these higher Spring flows. Future water monitoring efforts should account for periods when higher chemical uses occur, particularly in the face of climate change for regions experiencing population growth and de facto reuse.
Afficher plus [+] Moins [-]Antibiotic resistance and class 1 integron genes distribution in irrigation water-soil-crop continuum as a function of irrigation water sources Texte intégral
2021
Shamsizadeh, Zahra | Ehrampoush, Mohammad Hassan | Nikaeen, Mahnaz | Farzaneh Mohammadi, | Mokhtari, Mehdi | Gwenzi, Willis | Khanahmad, Hossein
The increasing demand for fresh water coupled with the need to recycle water and nutrients has witnessed a global increase in wastewater irrigation. However, the development of antibiotic resistance hotspots in different environmental compartments, as a result of wastewater reuse is becoming a global health concern. The effect of irrigation water sources (wastewater, surface water, fresh water) on the presence and abundance of antibiotic resistance genes (ARGs) (blaCTX₋ₘ₋₃₂, tet-W, sul1, cml-A, and erm-B) and class 1 integrons (intI1) were investigated in the irrigation water-soil-crop continuum using quantitative real-time PCR (qPCR). Sul1 and blaCTX₋ₘ₋₃₂ were the most and least abundant ARGs in three environments, respectively. The abundance of ARGs and intI1 significantly decreased from wastewater to surface water and then fresh water. However, irrigation water sources had no significant effect on the abundance of ARGs and intI1 in soil and crop samples. Principal component analysis (PCA) showed that UV index and air temperature attenuate the abundance of ARGs and intI1 in crop samples whereas the air humidity and soil electrical conductivity (EC) promotes the ARGs and intI1. So that the climate condition of semi-arid regions significantly affects the abundance of ARGs and intI1 in crop samples. The results suggest that treated wastewater might be safely reused in agricultural practice in semi-arid regions without a significant increase of potential health risks associated with ARGs transfer to the food chain. However, further research is needed for understanding and managing ARGs transfer from the agricultural ecosystem to humans through the food chain.
Afficher plus [+] Moins [-]Modeling the fate and human health impacts of pharmaceuticals and personal care products in reclaimed wastewater irrigation for agriculture Texte intégral
2021
Shahriar, Abrar | Tan, Junwei | Sharma, Priyamvada | Hanigan, David | Verburg, Paul | Pagilla, Krishna | Yang, Yu
Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100–535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10⁻⁶, 4.73 × 10⁻⁵, 1.17 × 10⁻⁶, 1.53 × 10⁻⁵, and 7.38 × 10⁻⁶ mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10⁻⁷− 4.02 × 10⁻³ and 4.39 × 10⁻¹⁵− 6.27 × 10⁻⁷ mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10⁻¹⁸− 1.74 × 10⁻¹⁰ mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a ‘typical’ reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.
Afficher plus [+] Moins [-]Creating a hierarchy of hazard control for urban stormwater management Texte intégral
2019
Ma, Yukun | Deilami, Kaveh | Egodawatta, Prasanna | Liu, An | McGree, James | Goonetilleke, Ashantha
Urban stormwater reuse is becoming increasingly prevalent to overcome the serious urban water scarcity being experienced around the world. Therefore, the adoption of reliable approaches to minimise the human health risk posed by pollutants commonly present in urban stormwater such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) is critical for safe stormwater reuse. This study collected a total of 40 pollutant build-up samples and analysed the concentrations of nine heavy metals and 15 PAH species. Based on pollutant build-up data, pollutant concentrations in stormwater were estimated through modelling. Risk assessment was conducted using an existing model developed by previous studies. The study outcomes confirmed that simply evaluating the individual pollutant concentrations based on guideline threshold values cannot comprehensively estimate the overall human health risk posed by these pollutants. Accordingly, it is recommended that the assessment of the overall human health risk should be based on the pollutant mix present as provided by the models discussed in this paper. The study has also demonstrated the practical application of a robust risk assessment model to derive the hierarchy of hazard control to provide a reliable underpinning to urban stormwater risk management. The outcomes suggest that decentralised hazard control methods such as the provision of custom designed Water Sensitive Urban Design (WSUD) measures can be implemented in priority areas with high risk from stormwater pollution based on the risk assessment undertaken. Distributed hazard control methods can be applied to reduce the generation of primary toxic pollutants, especially chromium (Cr) and heavy PAHs, through elimination and substitution measures. The percentage reduction in traffic volume required to mitigate the human health risk can be quantified through the risk models presented. The study outcomes will contribute to the development of efficient, targeted and reliable stormwater management strategies and to identify viable opportunities for stormwater reuse.
Afficher plus [+] Moins [-]The imidacloprid remediation, soil fertility enhancement and microbial community change in soil by Rhodopseudomonas capsulata using effluent as carbon source Texte intégral
2020
Wu, Pan | Zhang, Xuewei | Niu, Tong | Wang, Yanling | Liu, Rijia | Zhang, Ying
The effects of Rhodopseudomonas capsulata (R. capsulata) in the treated effluent of soybean processing wastewater (SPW) on the remediation of imidacloprid in soil, soil fertility, and the microbial community structure in soil were studied. Compared with the control group, with the addition of effluent containing R. capsulata, imidacloprid was effectively removed, soil fertility was enhanced, and the microbial community structure was improved. Molecular analysis indicated that imidacloprid could exert induction effects on expression of cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in two-component system (TCS). For R. capsulata, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation, because R. capsulata are a type of archaea and imidacloprid is an environmental stress. Before expression of the cpm gene and synthesis of P450, R. capsulata need a period of time to adapt to external imidacloprid stimulation. However, the lack of organic matter in the soil cannot sustain R. capsulata growth for more than 1 day. In four groups with added effluent, the remaining organic matter in the effluent provided a sufficient carbon source and energy for R. capsulata. Five days later, the microbial community structure was improved by R. capsulata in the soil. The new technique could be used to remediate imidacloprid, enhance soil fertility, treat SPW and realize the recycling and reuse of wastewater and R. capsulata cells.
Afficher plus [+] Moins [-]Water reuse and aquaculture: Pharmaceutical bioaccumulation by fish during tertiary treatment in a wastewater stabilization pond Texte intégral
2020
Grabicová, Kateřina | Grabic, Roman | Fedorova, Ganna | Vojs Staňová, Andrea | Blaha, Martin | Randák, Tomáš | Brooks, Bryan W. | Žlábek, Vladimír
With increasing demand for aquaculture products, water reuse is likely to increase for aquaculture operations around the world. Herein, wastewater stabilization ponds (WSP) represents low cost and sustainable treatment technologies to reduce nutrients and various contaminants of emerging concern from effluent. In the present study, we examined bioaccumulation of selected pharmaceuticals from several therapeutic classes by two important fish species in aquaculture with different feeding preferences (Cyprinus carpio and Sander lucioperca) and their common prey to test whether species specific accumulation occurs. Forty and nineteen from 66 selected pharmaceuticals and their metabolites were positively found in water and sediment samples, respectively from the representative WSP. After a six-month study, which corresponds to aquaculture operations, fourteen pharmaceuticals and their metabolites were detected (at a frequency of higher than 50% of samples) in at least one fish tissue collected from the WSP. We observed striking differences for species and organ specific BAFs among study compounds. Though muscle tissues consistently accumulated lower levels of the target analytes, several substances were elevated in brain, liver and kidney tissues (e.g., sertraline) of both species. Low residual concentrations of these target analytes in aquaculture products (fish fillets) suggest WSPs are promising to support the water-food nexus in aquaculture.
Afficher plus [+] Moins [-]Rhodopseudomonas sphaeroides treating mesosulfuron-methyl waste-water Texte intégral
2020
Wu, Pan | Liu, Yuxin | Song, Xue | Wang, Yanling | Sheng, Luying | Wang, Haimei | Zhang, Ying
The soybean processing wastewater (SPW) supplementation to facilitate the simultaneously treatment (SPW and mesosulfuron-methyl) of wastewater and production of biological substances by Rhodopseudomonas sphaeroides (R. sphaeroides) was discussed. Compared with the control group, with the addition of SPW, mesosulfuron-methyl was removed, and the yields of single-cell proteins, carotenoids, and bacteriochlorophyll were increased. In the 3 mg/L dose group, the mesosulfuron-methyl removal rate reached 97% after 5 days. Molecular analysis revealed that mesosulfuron-methyl exhibited induction effects on expression of the cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in TCS signal transduction pathway. For R. sphaeroides, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation. Prior to expressing cpm gene and synthesizing P450, R. sphaeroides need a period of time to adapt to external mesosulfuron-methyl stimulation. However, the R. sphaeroides growth could not be maintained for more than 1 day due to the lack of organic matter in the raw wastewater. The SPW supplementation provided a sufficient carbon source in four groups with added SPW. After 5 days, R. sphaeroides became the dominant microflora in the wastewater. This new method could complete the treatment of mixed wastewater, the increased of biological substances output and the reuse of wastewater and R. sphaeroides cells as resources at the same time.
Afficher plus [+] Moins [-]Characterization of dissolved organic matter in reclaimed wastewater supplying urban rivers with a special focus on dissolved organic nitrogen: A seasonal study Texte intégral
2020
Hu, Haidong | Xing, Xinyu | Wang, Jinfeng | Ren, Hongqiang
This study investigated the seasonal characterization of dissolved organic matter (DOM) in reclaimed wastewater (RW) with a special focus on dissolved organic nitrogen (DON) from two full-scale municipal wastewater reclamation plants (WRPs) where the produced RW was used to augment urban rivers. Results showed that the concentrations of DON in RW ranged from 0.32 mg/L to 1.21 mg/L. A higher seasonal mean value of DON in RW from both of the WRPs was observed in winter (p < 0.05, ANOVA). DON chemical characteristics analysis, including ultrahigh-resolution mass spectrometry and ultrafiltration fractionation, showed that DON in RW exhibits more lability during winter than during the other three seasons. This finding was also supported by the results of an algal bioassay experiment, in which DON bioavailabilities were 63.7 ± 3.0%, 53.0 ± 5.3%, 49.5 ± 0.5%, and 49.8 ± 0.2% for WRP-A and were 60.8 ± 2.4%, 43.7 ± 2.2%, 41.2 ± 1.7%, and 43.1 ± 1.1% for WRP-B in winter, spring, summer, and autumn, respectively. Accordingly, DON in RW during winter is more prone to stimulate natural algae and microorganisms, which gives rise to eutrophication in urban rivers. At the molecular level, the seasonal changes in DON are not coupled with those of DOC, which highlights the necessity of DON measurement to obtain a comprehensive understanding of the seasonal characteristics of DOM in RW and its effect on wastewater reuse in urban rivers.
Afficher plus [+] Moins [-]The utilization of reclaimed water: Possible risks arising from waterborne contaminants Texte intégral
2019
Deng, Shenxi | Yan, Xueting | Zhu, Qingqing | Liao, Chunyang
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
Afficher plus [+] Moins [-]Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants Texte intégral
2018
Jäger, Thomas | Alexander, Johannes | Kirchen, Silke | Dötsch, Andreas | Wieland, Arne | Hiller, Christian | Schwartz, Thomas
In respect to direct and indirect water reuse, the microbiological quality of treated wastewater is highly important. Conventional wastewater treatment plants are normally not equipped with advanced technologies for the elimination of bacteria. Molecular biology analyses were combined with live-dead discrimination analysis of wastewater population using Propidium monoazide (PMA) to study population shifts during ozonation (1 g ozone/g DOC) at a municipal wastewater treatment plant. Escherichia coli, enterococci, and Pseudomonas aeruginosa were quantified by polymerase chain reaction (qPCR) and the whole wastewater population was analyzed by metagenomic sequencing. The PMA-qPCR experiments showed that the abundances of P. aeruginosa didn't change by ozone treatment, whereas a reduction was observed for E. coli and enterococci. Results comparing conventional cultivation experiments with PMA-qPCR underlined the presence of viable but not culturable cells (VBNC) and their regrowth potential after ozone treatment. Illumina HiSeq sequencing results with and without PMA treatment demonstrated high population similarities in water samples originating from ozone inflow sampling sides. Upon using PMA treatment after ozonation, population shifts became visible and also underlined the importance of PMA treatment for the evaluation of elimination and selection processes during ozonation at WWTPs. Amongst a number of 14 most abundant genera identified in the inflow samples, 9 genera were found to be reduced, whereas 4 genera increased in relative abundance and 1 genus almost remained constant. The strongest increase in relative abundance after ozonation was detected for Oscillatoria spp., Microcoleus spp. and Nitrospira spp. Beside this, a continuous release of Pseudomonas spp. (including P. aeruginosa) to the downstream receiving body was confirmed. Regrowth experiments demonstrated a high prevalence of P. aeruginosa as part of the surviving bacterial population. Summing up, molecular biology analyses in combination with live-dead discrimination are comprehensive methods to evaluate the elimination processes targeting specific species and/or whole microbial populations.
Afficher plus [+] Moins [-]