Affiner votre recherche
Résultats 1-10 de 515
Water Quality Assessment in Urban Wetlands and Suitability for Fish Habitat: A Case Study Texte intégral
2021
Dixit, Arohi | Siva Siddaiah, Neelam | Singh Chauhan, Jogindar | Ullah Khan, Waseem
In this study, water from three urban wetlands of Gurugram – Sultanpur (WS), Damdama (WD), and Basai (WB), was studied for various physicochemical parameters to assess their suitability for the healthy survival of fishes and the results were compared with the limits of these parameters for fish farming. The parameters studied were colour, temperature, pH, alkalinity, hardness, Ca2+- Mg2+ ratio, NO3-, Cl-, SO42-, PO43-, and heavy metals (Fe, Mn, Cr, Cu, Zn, Ni and Pb). The results of the study indicate the majority of studied parameters are beyond the desirable limits in WB; thus, water is most unsuitable for fishes in WB. WB is unsuitable for parameters: colour, alkalinity, hardness, Ca -Mg ratio, NO3-, Cl-, SO42-, PO43-, Cr, Cu, Fe, Mn, Ni and Zn. WS needs consideration for temperature, NO3-, Cu, Ni and Zn, whereas WD needs improvement in temperature, TDS, NO3-, Cr, Cu, Fe, Mn, Ni and Zn concentration for better fish growth. Most of the parameters are high in summer as compared to winter, which is due to the dilution after rainfall. Hence, we recommend timely action for effective measures to improve the water quality of wetlands and their regular monitoring for improved fish habitat.
Afficher plus [+] Moins [-]The use of duckweed for wastewater treatment.
1988
Zirschky J. | Reed S.C.
Biovectoring of plastic by white storks from a landfill to a complex of salt ponds and marshes Texte intégral
2023
Cano-Povedano, Julián | López-Calderón, Cosme | Sánchez, Marta I. | Hortas Rodríguez-Pascual, Francisco | Cañuelo-Jurado, Belén | Martín-Vélez, Víctor | Ros Clemente, Macarena | Cózar Cabañas, Andrés | Green, Andy J. | Biología
Research into plastic pollution has extensively focused on abiotic vectors, overlooking transport by animals. Opportunistic birds, such as white storks (Ciconia ciconia) often forage on landfills, where plastic abounds. We assess plastic loading by ingestion and regurgitation of landfill plastic in Cadiz Bay, a major stopover area for migratory white storks in south-west Spain. On average, we counted 599 storks per day moving between a landfill and a complex of salt ponds and marshes, where they regurgitated pellets that each contained a mean of 0.47 g of plastic debris, dominated by polyethylene. Modelling reliant on GPS tracking estimated that 99 kg and >2 million particles of plastic were biovectored into the wetland during 2022, with seasonal peaks that followed migration patterns. GPS data enabled the correction of field censuses and the identification of plastic deposition hotspots. This study highlights the important role that biovectoring plays in plastic transport into coastal wetlands.
Afficher plus [+] Moins [-]Seasonal variation in release characteristics and mechanisms of sediment phosphorus to the overlying water in a free water surface wetland, southwest China Texte intégral
2022
Liang, Qibin | Chen, Ting | Wang, Yanxia | Gao, Lei | Hou, Lei
Geochemical cycling of iron (Fe) mediated by sediment microbes drives the remobilization of phosphorus (P). Understanding the underlying mechanism is essential for the evaluation of P retention by wetlands. The diffusive gradients in thin film (DGT) and 16S rDNA sequencing techniques were combined to explore seasonal variations in the remobilization mechanism of sediment P in a free water surface wetland in southwest China. A significantly positive correlation between labile P and Fe concentrations was found from the sediment profiles, indicating coupled remobilization of Fe and P in the sediment. Fe-reducing bacterial genera, particularly Sphingomonas and Geothermobacter, were responsible for the reductive dissolution of Fe oxides and subsequent P release in sediment. The efflux of sediment P was higher in the rainy season (95 ± 87 ng cm⁻² d⁻¹) than in the dry season (39 ± 29 ng cm⁻² d⁻¹). Based on the significantly positive relationship between the efflux and total concentration of sediment P, we propose a promising regression equation for quantifying the release risk of sediment P. The Luoshijiang Wetland exhibited a higher release potential as indicated by a greater regression slope (0.558) compared to the other water bodies (0.055), which was mainly attributed to the lower labile Fe:P molar ratio in the sediment. Based on estimations of the diffusive flux of P at the sediment-water interface, sediment contributed more than 172 and 413 g of P per day to the water column in the dry and rainy seasons, respectively, accounting for 14.0% and 1.9% of the P mass in the surface water of the wetland.
Afficher plus [+] Moins [-]A catastrophic change in a european protected wetland: From harmful phytoplankton blooms to fish and bird kill Texte intégral
2022
Demertzioglou, Maria | Genitsaris, Savvas | Mazaris, Antonios D. | Kyparissis, Aris | Voutsa, Dimitra | Kozari, Argyri | Kormas, Konstantinos Ar | Stefanidou, Natassa | Katsiapi, Matina | Michaloudi, Evangelia | Moustaka-Gouni, Maria
Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.
Afficher plus [+] Moins [-]Microplastics profile in constructed wetlands: Distribution, retention and implications Texte intégral
2022
Lu, Hsuan-Cheng | Ziajahromi, Shima | Locke, Ashley | Neale, Peta A. | Leusch, Frederic D.L.
Wastewater and stormwater are both considered as critical pathways contributing microplastics (MPs) to the aquatic environment. However, there is little information in the literature about the potential influence of constructed wetlands (CWs), a commonly used wastewater and stormwater treatment system. This study was conducted to investigate the abundance and distribution of MPs in water and sediment at five CWs with different influent sources, namely stormwater and wastewater. The MP abundance in the water samples ranged between 0.4 ± 0.3 and 3.8 ± 2.3 MP/L at the inlet and from 0.1 ± 0.0 to 1.3 ± 1.0 MP/L at the outlet. In the sediment, abundance of MPs was generally higher at the inlet, ranging from 736 ± 335 to 3480 ± 4330 MP/kg dry sediment and decreased to between 19.0 ± 16.4 and 1060 ± 326 MP/kg dry sediment at the outlet. Although no significant differences were observed in sediment cores at different depth across the five CWs, more MPs were recorded in silt compared to sandy sediment which indicated sediment grain size could be an environmental factor contributing to the distribution of MPs. Polyethylene terephthalate (PET) fibres were the dominant polymer type found in the water samples while polyethylene (PE) and polypropylene (PP) fragments were predominantly recorded in the sediment. While the size of MPs in water varied across the studied CWs, between 51% and 64% of MPs in the sediment were smaller than 300 μm, which raises concerns about the bioavailability of MPs to a wider range of wetland biota and their potential ecotoxicological effects. This study shows that CWs can not only retain MPs in the treated water, but also become sinks accumulating MPs over time.
Afficher plus [+] Moins [-]Metal(loid) pollution, not urbanisation nor parasites predicts low body condition in a wetland bioindicator snake Texte intégral
2022
Lettoof, Damian C. | Cornelis, Jari | Jolly, Christopher J. | Aubret, Fabien | Gagnon, Marthe Monique | Hyndman, Timothy H. | Barton, Diane P. | Bateman, Philip W.
Urban ecosystems and remnant habitat 'islands' therein, provide important strongholds for many wildlife species including those of conservation significance. However, the persistence of these habitats can be undermined if their structure and function are too severely disrupted. Urban wetlands, specifically, are usually degraded by a monoculture of invasive vegetation, disrupted hydrology, and chronic-contamination from a suite of anthropogenic pollutants. Top predators—as bioindicators—can be used to assess and monitor the health of these ecosystems. We measured eight health parameters (e.g., parasites, wounds and scars, tail loss and body condition) in a wetland top predator, the western tiger snake, Notechis scutatus occidentalis. For three years, snakes were sampled across four wetlands along an urban gradient. For each site, we used GIS software to measure the area of different landscapes and calculate an urbanisation–landscape score. Previously published research on snake contamination informed our calculations of a metal-pollution index for each site. We used generalised linear mixed models to assess the relationship between all health parameters and site variables. We found the metal-pollution index to have the most significant association with poor body condition. Although parasitism, tail loss and wounds differed among sites, none of these parameters influenced body condition. Additionally, the suite of health parameters suggested differing health status among sites; however, our measure of contemporary landscape urbanisation was never a significant predictor variable. Our results suggest that the health of wetland predators surrounding a rapidly growing city may be offset by higher levels of environmental pollution.
Afficher plus [+] Moins [-]Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland Texte intégral
2021
Feng, Sheng Jun | Liu, Xue Song | Cao, Hong Wei | Yang, Zhi Min
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
Afficher plus [+] Moins [-]Modern lake sedimentary record of PAHs and OCPs in a typical karst wetland, south China: Response to human activities and environmental changes Texte intégral
2021
Cheng, Cheng | Hu, Tianpeng | Liu, Weijie | Mao, Yao | Shi, Mingming | Xu, An | Su, Yewang | Li, Xingyu | Xing, Xinli | Qi, Shihua
The sedimentary history of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) over the past 140 years in a lake sediment core from Huixian karst wetland was reconstructed. The total PAHs and OCPs concentrations ranged from 40.0 to 210 ng g⁻¹ and 0.98 to 31.4 ng g⁻¹, respectively. The vertical distribution of PAHs and OCPs in different stages was great consistent with the history of regional socio-economic development and the usage of OCPs. As the indicators of socio-economic development, gross domestic product (GDP), population, energy consumption, highway mileage, and private vehicles correlated with the PAHs concentrations, indicating the impact of human activities on PAHs levels. The PAHs and OCPs concentrations were also affected by environmental changes in the wetland, as reconstructed by total organic carbon (TOC), sand, silt, clay, quartz, and calcite in sediments. Redundancy analysis (RDA) results showed TOC was the dominant factor to explain the concentrations of PAHs and OCPs with the explanation of 86.7% and 43.5%, respectively. In addition, TOC content had significantly positive correlation with PAHs (0.96, p < 0.01) and OCPs (0.78, p < 0.01). In particular, the significantly positive correlation (p < 0.05) between calcite and PAHs and OCPs inferred that karstification might play an important role in the migration of PAHs and OCPs in the karst area. Therefore, the lake in Huixian wetland tended to be a sink more than a source of PAHs and OCPs influenced by the increasing TOC content and karstification under climate warming.
Afficher plus [+] Moins [-]Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production Texte intégral
2021
Zhang, Wangshou | Li, Hengpeng | Pueppke, Steven G. | Pang, Jiaping
Wetlands can improve water quality, but they are also recognized as important sources of greenhouse gases (GHG) such as nitrous oxide (N₂O) and methane (CH₄). Emissions of these gases from wetland ecosystems, especially those in headwaters, are poorly understood. Here, we determined monthly concentrations of dissolved N₂O and CH₄ in a headwater stream of the Taihu Lake basin of China that contains both wetland and non-wetland reaches. Daily GHG dynamics in the wetland reach were also investigated. Riverine N₂O and CH₄ concentrations generally varied within 10–30 nmol L⁻¹ and 0.1–1.5 μmol L⁻¹, respectively. CH₄ saturation levels in the wetland reach were about seven times higher than those in the non-wetland reach, but there was no difference in N₂O saturation. In the wetland reach, saturation levels of CH₄ peaked in July, coincident with a dip in N₂O saturation to levels below its saturated solubility. This underscores that hotspots of CH₄ production and sinks for N₂O can occur occasionally in wetlands in mid-summer, when vegetative growth and microbial activities are high. Diurnal measurements indicated that CH₄ saturation in water flows passing through the wetlands from midnight through the early morning can surge to levels 10 times higher than those detected at other times of the day. Simultaneously, saturation levels of N₂O decreased by 75%, indicating a net consumption of N₂O. Changes in nutrient supply determined by upstream inflows, as well as dissolved oxygen, pH, and other environmental factors mediated by the wetlands, correlate with the differentiated behavior of N₂O and CH₄ production in wetlands. Additional work will be necessary to confirm the roles of these factors in regulating GHG emissions in riverine wetlands.
Afficher plus [+] Moins [-]