Affiner votre recherche
Résultats 1-3 de 3
Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents
2016
Huang, Lei | Fang, Hongwei | He, Guojian | Jiang, Helong | Wang, Changhui
Wind-driven sediment resuspension exerts significant effects on the P behavior in shallow lake ecosystems. In this study, a comprehensive dynamic phosphorus (P) model that integrates hydrodynamic, wind wave and sediment transport is proposed to assess the importance of internal P cycling due to sediment resuspension on water column P levels. The primary contribution of the model is detailed modeling and rigorous coupling of sediment and P dynamics. The proposed model is applied to predict the P behavior in the shallow Taihu Lake, which is the third largest lake in China, and quantitatively estimate the effects of wind waves and lake currents on P release and distribution. Both the prevailing southeast winds in summer and northwest winds in winter are applied for the simulation, and different wind speeds of 5 m/s and 10 m/s are also considered. Results show that sediment resuspension and the resulting P release have a dominant effect on P levels in Taihu Lake, and likely similar shallow lakes. Wind-driven waves at higher wind speeds significantly enhance sediment resuspension and suspended sediment concentration (SSC). Total P concentration in the water column is also increased but not in proportion to the SSC. The different lake circulations resulting from the different prevailing wind directions also affect the distribution of suspended sediment and P around the lake ultimately influencing where eutrophication is likely to occur. The proposed model demonstrates that internal cycling in the lake is a dominant factor in the lake P and must be considered when trying to manage water quality in this and similar lakes. The model is used to demonstrate the potential effectiveness of remediation of an area where historical releases have led to P accumulation on overall lake quality.
Afficher plus [+] Moins [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong
Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Afficher plus [+] Moins [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong
Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Afficher plus [+] Moins [-]