Affiner votre recherche
Résultats 1-10 de 1,278
Gas-bubble disease in three fish species inhabiting the heated discharge of a steam-electric station using hypolimnetic cooling water.
1990
McInerny M.C.
Long-term trends in particulate matter from wood burning in the United Kingdom: Dependence on weather and social factors Texte intégral
2022
Font, A. | Ciupek, K. | Butterfield, D. | Fuller, G.W.
Particulate matter from wood burning emissions (Cwₒₒd) was quantified at five locations in the United Kingdom (UK), comprising three rural and two urban sites between 2009 and 2021. The aethalometer method was used. Mean winter Cwₒₒd concentrations ranged from 0.26 μg m⁻³ (in rural Scotland) to 1.30 μg m⁻³ (London), which represented on average 4% (in rural environments) and 5% (urban) of PM₁₀ concentrations; and 8% of PM₂.₅. Concentrations were greatest in the evenings in winter months, with larger evening concentrations in the weekends at the urban sites. Random-forest (RF) machine learning regression models were used to reconstruct Cwₒₒd concentrations using both meteorological and temporal explanatory variables at each site. The partial dependency plots indicated that temperature and wind speed were the meteorological variables explaining the greatest variability in Cwₒₒd, with larger concentrations during cold and calm conditions. Peaks of Cwₒₒd concentrations took place during and after events that are celebrated with bonfires. These were Guy Fawkes events in the urban areas and on New Year's Day at the rural sites; the later probably related to long-range transport. Time series were built using the RF. Having removed weather influences, long-term trends of Cwₒₒd were estimated using the Theil Sen method. Trends for 2015–2021 were downward at three of the locations (London, Glasgow and rural Scotland), with rates ranging from −5.5% year⁻¹ to −2.5% year⁻¹. The replacement of old fireplaces with lower emission wood stoves might explain the decrease in Cwₒₒd especially at the urban sites The two rural sites in England observed positive trends for the same period but this was not statistically significant.
Afficher plus [+] Moins [-]Source analysis of the tropospheric NO2 based on MAX-DOAS measurements in northeastern China Texte intégral
2022
Liu, Feng | Xing, Chengzhi | Su, Pinjie | Luo, Yifu | Zhao, Ting | Xue, Jiexiao | Zhang, Guohui | Qin, Sida | Song, Youtao | Bu, Naishun
Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (Max-DOAS) measurements of nitrogen dioxide (NO₂) were continuously obtained from January to November 2019 in northeastern China (NEC). Seasonal variations in the mean NO₂ vertical column densities (VCDs) were apparent, with a maximum of 2.9 × 10¹⁶ molecules cm⁻² in the winter due to enhanced NO₂ emissions from coal-fired winter heating, a longer photochemical lifetime and atmospheric transport. Daily maximum and minimum NO₂ VCDs were observed, independent of the season, at around 11:00 and 13:00 local time, respectively, and the most obvious increases and decreases occurred in the winter and autumn, respectively. The mean diurnal NO₂ VCDs at 11:00 increased to at 08:00 by 1.6, 5.8, and 6.7 × 10¹⁵ molecules cm⁻² in the summer, autumn and winter, respectively, due to increased NO₂ emissions, and then decreased by 2.8, 4.2, and 5.1 × 10¹⁵ molecules cm⁻² at 13:00 in the spring, summer, and autumn, respectively. This was due to strong solar radiation and increased planetary boundary layer height. There was no obvious weekend effect, and the NO₂ VCDs only decreased by about 10% on the weekends. We evaluated the contributions of emissions and transport in the different seasons to the NO₂ VCDs using a generalized additive model, where the contributions of local emissions to the total in the spring, summer, autumn, and winter were 89 ± 12%, 92 ± 11%, 86 ± 12%, and 72 ± 16%, respectively. The contribution of regional transport reached 26% in the winter, and this high contribution value was mainly correlated with the northeast wind, which was due to the transport channel of air pollutants along the Changbai Mountains in NEC. The NO₂/SO₂ ratio was used to identify NO₂ from industrial sources and vehicle exhaust. The contribution of industrial NO₂ VCD sources was >66.3 ± 16% in Shenyang due to the large amount of coal combustion from heavy industrial activity, which emitted large amounts of NO₂. Our results suggest that air quality management in Shenyang should consider reductions in local NO₂ emissions from industrial sources along with regional cooperative control.
Afficher plus [+] Moins [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system Texte intégral
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system Texte intégral
2022
Rodríguez–Villegas, Camilo | Díaz, Patricio A. | Salgado, Pablo | Tomasetti, Stephen J. | Díaz, Manuel | Marín, Sandra L. | Baldrich, Ángela M. | Niklitschek, Edwin | Pino, Loreto | Matamala, Thamara | Espinoza, Katherine | Figueroa, Rosa I.
Harmful algal blooms (HABs) are recurrent in the NW Patagonia fjords system and their frequency has increased over the last few decades. Outbreaks of HAB species such as Alexandrium catenella, a causal agent of paralytic shellfish poisoning, and Protoceratium reticulatum, a yessotoxins producer, have raised considerable concern due to their adverse socioeconomic consequences. Monitoring programs have mainly focused on their planktonic stages, but since these species produce benthic resting cysts, the factors influencing cyst distributions are increasingly gaining recognition as potentially important to HAB recurrence in some regions. Still, a holistic understanding of the physico-chemical conditions influencing cyst distribution in this region is lacking, especially as it relates to seasonal changes in drivers of cyst distributions, as the characteristics that favor cyst preservation in the sediment may change through the seasons. In this study, we analyzed the physico–chemical properties of the sediment (temperature, pH, redox potential) and measured the bottom dissolved oxygen levels in a “hotspot” area of southern Chile, sampling during the spring and summer as well as the fall and winter, to determine the role these factors may play as modulators of dinoflagellate cyst distribution, and specifically for the cysts of A. catenella and P. reticulatum. A permutational analysis of variance (PERMANOVA) showed the significant effect of sediment redox conditions in explaining the differences in the cyst assemblages between spring-summer and fall-winter periods (seasonality). In a generalized linear model (GLM), sediment redox potential and pH were associated with the highest abundances of A. catenella resting cysts in the spring-summer, however it was sediment temperature that most explained the distribution of A. catenella in the fall-winter. For P. reticulatum, only spring-summer sediment redox potential and temperature explained the variation in cyst abundances. The implications of environmental (physico-chemical) seasonality for the resting cysts dynamics of both species are discussed.
Afficher plus [+] Moins [-]The role of physico-chemical interactions in the seasonality of toxic dinoflagellate cyst assemblages: The case of the NW Patagonian fjords system
The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain Texte intégral
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
Afficher plus [+] Moins [-]Importance of local non-fossil sources to carbonaceous aerosols at the eastern fringe of the Tibetan Plateau, China: Δ14C and δ13C evidences Texte intégral
2022
Li, Yizhong | Zhang, Chao | Yan, Fangping | Kang, Shichang | Xu, Yinbo | Liu, Yixi | Gao, Yongheng | Chen, Pengfei | He, Cenlin
Carbonaceous particles are an important radiative forcing agent in the atmosphere, with large temporal and spatial variations in their concentrations and compositions, especially in remote regions. This study reported the Δ¹⁴C and δ¹³C of total carbon (TC) and water-insoluble particulate carbon (IPC) of the total suspended particles (TSP) and PM₂.₅ at a remote site of the eastern Tibetan Plateau (TP), a region that is influenced by heavy air pollution from Southwest China. The average organic carbon and elemental carbon concentrations of TSP samples in this study were 3.20 ± 2.38 μg m⁻³ and 0.68 ± 0.67 μg m⁻³, respectively, with low and high values in summer and winter, respectively. The fossil fuel contributions of TC in TSP and PM₂.₅ samples were 18.91 ± 7.22% and 23.13 ± 12.52%, respectively, both of which were far lower than that in Southwest China, indicating the importance of non-fossil contributions from local sources. The δ¹³C of TC in TSP samples of the study site was −27.06 ± 0.96‰, which is between the values of long-range transported sources (e.g., Southwest China) and local biomass combustion emissions. Therefore, despite the contribution from the long-range transport of particles, aerosols emitted from local biomass combustion also have an important influence on carbonaceous particles at the study site. The findings of this work can be applied to other remote sites on the eastern TP and should be considered in related research in the future.
Afficher plus [+] Moins [-]Frequent algal blooms dramatically increase methane while decrease carbon dioxide in a shallow lake bay Texte intégral
2022
Zhang, Lei | He, Kai | Wang, Tong | Liu, Cheng | An, Yanfei | Zhong, Jicheng
Freshwater ecosystems play a key role in global greenhouse gas estimations and carbon budgets, and algal blooms are widespread owing to intensified anthropological activities. However, little is known about greenhouse gas dynamics in freshwater experiencing frequent algal blooms. Therefore, to explore the spatial and temporal variations in methane (CH₄) and carbon dioxide (CO₂), seasonal field investigations were performed in the Northwest Bay of Lake Chaohu (China), where there are frequent algal blooms. From the highest site in the nearshore to the pelagic zones, the CH₄ concentration in water decreased by at least 80%, and this dynamic was most obvious in warm seasons when algal blooms occurred. CH₄ was 2–3 orders of magnitude higher than the saturated concentration, with the highest in spring, which makes this bay a constant source of CH₄. However, unlike CH₄, CO₂ did not change substantially, and river mouths acted as hotspots for CO₂ in most situations. The highest CO₂ concentration appeared in winter and was saturated, whereas at other times, CO₂ was unsaturated and acted as a sink. The intensive photosynthesis of rich algae decreased the CO₂ in the water and increased dissolved oxygen and pH. The increase in CH₄ in the bay was attributed to the mineralization of autochthonous organic carbon. These findings suggest that frequent algal blooms will greatly absorb more CO₂ from atmosphere and increasingly release CH₄, therefore, the contribution of the bay to the lake's CH₄ emissions and carbon budget will be major even though it is small. The results of this study will be the same to other shallow lakes with frequent algal bloom, making lakes a more important part of the carbon budget and greenhouse gases emission.
Afficher plus [+] Moins [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya Texte intégral
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
Afficher plus [+] Moins [-]Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China Texte intégral
2022
Li, Xia | Bei, Naifang | Wu, Jiarui | Wang, Ruonan | Liu, Suixin | Liu, Lang | Jiang, Qian | Tie, Xuexi | Molina, Luisa T. | Li, Guohui
Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O₃) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O₃ concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM₂.₅) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.
Afficher plus [+] Moins [-]Organophosphate pesticides in South African eutrophic estuaries: Spatial distribution, seasonal variation, and ecological risk assessment Texte intégral
2022
Olisah, Chijioke | Rubidge, Gletwyn | Human, Lucienne R.D. | Adams, Janine B.
The seasonal variation, spatial distribution, and ecological risks of thirteen organophosphate pesticides (OPPs) were studied in the Sundays and Swartkops estuaries in South Africa. Ten pesticides were detected in surface water samples from both estuaries, while all OPPs were detected in sediments. The highest concentration of OPPs (18.8 μg pyrazophos L⁻¹) was detected in surface water samples from Swartkops Estuary, while 48.7 μg phosalone kg⁻¹ dw was the highest in sediments collected from Sundays Estuary. There was no clear seasonal pattern in OPPs occurrence in surface water from both systems. However, their occurrence in sediments was in the following order: winter > autumn > summer > spring, perhaps indicating major pesticide input in the winter seasons. Results from ecological risk assessment showed that pyraclofos and chlorpyrifos (CHL) in surface water from both systems are respectively likely to cause high acute and chronic toxicity to fish (risk quotient – RQ > 1). For sediments of both estuaries, the highest acute and chronic RQs for fish were calculated for isazophos and CHL respectively. The majority of the detected OPPs in sediments posed potential high risks to Daphnia magna from both systems. These results suggest that these aquatic organisms (fish, and Daphnia), if present in the studied estuaries, can develop certain forms of abnormalities due to OPP exposure. To this end, proper measures should be taken to reduce OPP input into the estuarine systems.
Afficher plus [+] Moins [-]