Affiner votre recherche
Résultats 1001-1010 de 8,010
Source apportionment and human health risk assessment of trace metals and metalloids in surface soils of the Mugan Plain, the Republic of Azerbaijan Texte intégral
2021
Han, Junho | Lee, Seoyeon | Mămmădov, Zaman | Kim, Minhee | Mammadov, Garib | Ro, Hee-Myong
The Mugan Plain is the most productive area in the Republic of Azerbaijan, but a previous study confirmed trace metal and metalloid (TM&M) contamination with Cr, Ni and Pb, and the potential ecological risk of As was estimated. However, no industrial activity was previously reported in this area; thus, a source apportionment model using positive matrix factorization (PMF) was employed to identify pollution sources, and a human health risk assessment was conducted to evaluate noncarcinogenic and carcinogenic risks. Surface soil samples were collected from 349 sites, and six major elements (Si, Ca, Cl, P, S and Sr) and 8 TM&Ms (As, Cd, Cr, Co, Cu, Ni, Pb and Zn) were analyzed by X-ray fluorescence and employed for further apportionment and risk assessment. As a result, the PMF model showed 7 factors, assigned to natural activity (12.9%), dry riverbed (13.6%), surface accumulation (3.1%), desalinization activity (3.2%), residential activity (12.3%), fossil fuel combustion (35.5%) and agricultural activity (19.3%). The PMF model characterized certain areas with desalinization activity in the previous Soviet period and with surface accumulation of salt, and these findings were confirmed by additional field surveys and historical Landsat satellite images. The risk assessment results showed that there was no risk for the adults, while for children, there was a noncarcinogenic risk, but no carcinogenic risk. Dermal contact was estimated to be the primary pathway, and Ni and As were identified as the most problematic TM&Ms for noncarcinogenic and carcinogenic risks, respectively. According to the results, fossil fuel combustion associated with heating and vehicle transportation was estimated to be the main source of pollution, contributing 42.6% of the noncarcinogenic and 48.0% of the carcinogenic risks. These results can provide scientific guidance to understand and prevent the risk of TM&Ms on the Mugan Plain.
Afficher plus [+] Moins [-]From mine to mind and mobiles – Lithium contamination and its risk management Texte intégral
2021
Bolan, Nanthi | Hoang, Son A. | Tanveer, Mohsin | Wang, Lei | Bolan, Shiv | Sooriyakumar, Prasanthi | Robinson, Brett | Wijesekara, Hasintha | Wijesooriya, Madhuni | Keerthanan, S. | Vithanage, Meththika | Markert, Bernd | Fränzle, Stefan | Wünschmann, Simone | Sarkar, Binoy | Vinu, Ajayan | Kirkham, M.B. | Siddique, Kadambot H.M. | Rinklebe, Jörg
With the ever-increasing demand for lithium (Li) for portable energy storage devices, there is a global concern associated with environmental contamination of Li, via the production, use, and disposal of Li-containing products, including mobile phones and mood-stabilizing drugs. While geogenic Li is sparingly soluble, Li added to soil is one of the most mobile cations in soil, which can leach to groundwater and reach surface water through runoff. Lithium is readily taken up by plants and has relatively high plant accumulation coefficient, albeit the underlying mechanisms have not been well described. Therefore, soil contamination with Li could reach the food chain due to its mobility in surface- and ground-waters and uptake into plants. High environmental Li levels adversely affect the health of humans, animals, and plants. Lithium toxicity can be considerably managed through various remediation approaches such as immobilization using clay-like amendments and/or chelate-enhanced phytoremediation. This review integrates fundamental aspects of Li distribution and behaviour in terrestrial and aquatic environments in an effort to efficiently remediate Li-contaminated ecosystems. As research to date has not provided a clear picture of how the increased production and disposal of Li-based products adversely impact human and ecosystem health, there is an urgent need for further studies on this field.
Afficher plus [+] Moins [-]Effect of short-term ambient PM2.5 exposure on fasting blood glucose levels: A longitudinal study among 47,471 people in eastern China Texte intégral
2021
Zhan, Mengyao | Li, Zhongqi | Li, Xiaona | Tao, Bilin | Zhang, Qun | Wang, Jianming
As a common health indicator in physical examinations, fasting blood glucose (FBG) level measurements are widely applied as a diagnostic method for diabetes mellitus. Uncertain conclusions remained regarding the relationship between PM₂.₅ exposure and FBG levels. We enrolled 47,471 subjects who participated in annual physical examinations between 2017 and 2019. We collected their general characteristics and FBG levels, and environmental factors simultaneously. We applied the generalized additive model to evaluate the impact of short-term outdoor PM₂.₅ exposure on FBG levels. Among the entire population, the single-pollutant models showed that a 10 μg/m³ increase in PM₂.₅ significantly contributed to 0.0030, 0.0233, and 0.0325 mmol/L increases in FBG at lag 0–7 days, lag 0–21 days, and lag 0–28 days, respectively. Accordingly, in multipollutant models, when PM₂.₅ increased by 10 μg/m³, there was an elevation of 0.0361, 0.0315, 0.0357, and 0.0387 mmol/L in FBG for 8-day, 15-day, 22-day, and 29-day moving averages, respectively. Similarly, we observed a significant positive association between them in the normal population. Moreover, the effects could be modified by age in both the entire and normal populations. Decreasing the ambient PM₂.₅ concentrations can alleviate the elevation of FBG, which may significantly impact the burden of diabetes mellitus.
Afficher plus [+] Moins [-]Indirect photodegradation of sulfadiazine in the presence of DOM: Effects of DOM components and main seawater constituents Texte intégral
2021
Bai, Ying | Zhou, Yanlei | Che, Xiaowei | Li, Conghe | Cui, Zhengguo | Su, Rongguo | Qu, Keming
The presence of pharmaceuticals and personal care products in coastal waters has caused concern over the past decade. Sulfadiazine (SD) is a very common antibiotic widely used as human and fishery medicine, and dissolved organic matter (DOM) plays a significant role in the indirect photodegradation of SD; however, the influence of DOM compositions on SD indirect photodegradation is poorly understood. The roles of reactive intermediates (RIs) in the indirect photolysis of SD were assessed in this study. The reactive triplet states of DOM (³DOM∗) played a major role, whereas HO· and ¹O₂ played insignificant roles. DOM was divided into four components using excitation-emission matrix spectroscopy combined with parallel factor analysis. The components included three allochthonous humic-like components and one autochthonous humic-like component. The allochthonous humic-like components contributed more to RIs generation and SD indirect photolysis than the autochthonous humic-like component. A significant relationship between the indirect photodegradation of SD and the decay of DOM fluorescent components was found (correlation coefficient, 0.99), and the different indirect photodegradation of SD in various DOM solutions might be ascribed to the different components of DOM. The indirect photolysis rate of SD first increased and then decreased with increasing pH. SD photolysis was enhanced by low salinity but remained stable at high salinity. The increased carbonate concentration inhibited SD photolysis, whereas nitrate showed almost no effect in this study.
Afficher plus [+] Moins [-]Contamination and human health risks of polycyclic aromatic hydrocarbons in surface soils from Tianjin coastal new region, China Texte intégral
2021
Shi, Rongguang | Li, Xiaohua | Yang, Yanying | Fan, Ying | Zhao, Zongshan
Polycyclic aromatic hydrocarbons (PAHs) in urban soils are of increasing concern because of their potential toxicity and persistence. However, there is limited information about PAHs in Tianjin coastal new region, although it is an important economic and industrial center in Northern China. Here we determined the concentrations of PAHs in 210 surface soil samples collected from this region according to administrative divisions covering Han’gu district, Tanggu district, and Dagang district, to evaluate their contamination and potential cancer risks. The concentrations of 16 PAHs ranged from 58.2 to 9160 ng g⁻¹, and the highest concentration was found in Han’gu district. According to the incremental lifetime cancer risk (ILCR) model, the soils from Han’gu district and Dagang district posed a moderate carcinogenic risk to residents, and dermal contact was the main exposure pathway. Besides, ILCRs for children through ingestion were comparable to those for adults but apparently higher than adolescents, while ILCRs of dermal contact for adults were higher than children and adolescents. Comparisons between the layout of industrial zones and the distributions of PAHs as well as ILCRs indicate that PAHs accumulating in soils and then incurring risk areas is partly controlled by the economic and industrial structure.
Afficher plus [+] Moins [-]Microplastic pollution of worldwide lakes Texte intégral
2021
Dusaucy, Julia | Gateuille, David | Perrette, Yves | Naffrechoux, Emmanuel
Studies on microplastic (MP) pollution in lakes are recent, although the problem of MP particles in the oceans was first discovered in the 1970s. The first study on lakes was published in 2011. Since then, to our knowledge, 98 lakes have been investigated worldwide. In recent years, studies on this topic have increased worldwide, particularly those focusing on urbanised lakes. Most of the plastic waste in the seas and oceans originates from the terrestrial environment and inland waters. Moreover, lakes are potential temporary or long-term MP accumulators, according to the residence time of water. They are also of high interest for biodiversity, ecology, and the economy. Lacustrine ecosystems may suffer the same fate as marine ecosystems, or even worse, owing to their greater exposure. With the significant focus on ocean and sea contamination, contamination of freshwater ecosystems and lakes is a new and rising topic. However, as a new field of research, several methodological issues have been raised. The team diversity worldwide has led to contrasting sampling techniques and materials, sample treatments, analyses, and presentation of results. Consequently, it is necessary to determine several consensuses between scientific teams in order to work together with accuracy, produce comparable results, speed up knowledge sharing and reduce the reproducibility crisis. This review focuses on (1) MP contamination in 98 worldwide lakes. We identify (2) the theoretical sources of MPs and provide (3) an estimate of MP pollution in different compartments of the lakes based on current state-of-the-art methods. In addition, we also report (4) the predominant MP size classes and polymer types. Finally, we suggest (5) several recommendations to build a consensus between all the working teams to facilitate decision-making by public authorities.
Afficher plus [+] Moins [-]Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River Texte intégral
2021
Won, Sangmin | Ha, Myung-Gyu | Nguyen, Dinh Duc | Kang, Ho Young
Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0–8.0, at a temperature of 30–40 °C, and salinity of 0.1–3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.
Afficher plus [+] Moins [-]Maternal urinary levels of glyphosate during pregnancy and anogenital distance in newborns in a US multicenter pregnancy cohort Texte intégral
2021
Lesseur, Corina | Pirrotte, Patrick | Pathak, Khyatiben V. | Manservisi, Fabiana | Mandrioli, Daniele | Belpoggi, Fiorella | Panzacchi, Simona | Li, Qian | Barrett, Emily S. | Nguyen, Ruby H.N. | Sathyanarayana, Sheela | Swan, Shanna H. | Chen, Jia
Human exposure to glyphosate has become ubiquitous because of its increasing agricultural use. Recent studies suggest endocrine disrupting effects of glyphosate. Specifically, in our work in rodents, low-dose early-life exposure to Roundup® (glyphosate-based herbicide) lengthened anogenital distance (AGD) in male and female offspring. AGD is a marker of the prenatal hormone milieu in rodents and humans. The relationship between glyphosate exposure and AGD has not been studied in humans. We conducted a pilot study in 94 mother-infant pairs (45 female and 49 male) from The Infant Development and the Environment Study (TIDES). For each infant, two AGD measurements were collected after birth; the anopenile (AGD-AP) and anoscrotal (AGD-AS) distances for males, and anoclitoral (AGD-AC) and anofourchette distances (AGD-AF) for females. We measured levels of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in 2nd trimester maternal urine samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. We assessed the relationship between exposure and AGD using sex-stratified multivariable linear regression models. Glyphosate and AMPA were detected in 95% and 93% of the samples (median 0.22 ng/mL and 0.14 ng/mL, respectively). Their concentrations were moderately correlated (r = 0.55, p = 5.7 × 10⁻⁹). In female infants, high maternal urinary glyphosate (above the median) was associated with longer AGD-AC (β = 1.48, 95%CI (−0.01, 3.0), p = 0.05), but this was not significant after covariate adjustment. Increased AMPA was associated with longer AGD-AF (β = 1.96, 95%CI (0.44, 3.5), p = 0.01) after adjusting for infant size and age at AGD exam. No associations were detected in male offspring. These preliminary findings partially reproduce our previous results in rodents and suggest that glyphosate is a sex-specific endocrine disruptor with androgenic effects in humans. Given the increasing glyphosate exposures in the US population, larger studies should evaluate potential developmental effects on endocrine and reproductive systems.
Afficher plus [+] Moins [-]Human impacted shallow lakes in the Pampean plain are ideal hosts for cyanobacterial harmful blooms Texte intégral
2021
O'Farrell, Inés | Sánchez, María Laura | Schiaffino, María Romina | Izaguirre, Irina | Huber, Paula | Lagomarsino, Leonardo | Yema, Lilen
The ecological status of Pampean shallow lakes is evidenced by Cyanobacteria Harmful Blooms impairing these nutrient enriched, turbid and polymictic water bodies spread along the Central Plains of Argentina. Under the premise that shallow lakes are sentinels of global climate and eutrophication, a 3-year research in ten lakes located across a climatic gradient explored which factors drove the dynamics of cyanobacterial assemblages frequently driving to bloom prevalence. Contrarily to what is expected, the effect of seasonal temperature on cyanobacteria was subordinated to both the light environment of the water column, which was on turn highly affected by water level conditions, and to nutrient concentrations. Monthly samplings evidenced that cyanobacterial assemblages presented a broad-scale temporal dynamics mostly reflecting inter-annual growth patterns driven by water level fluctuations. Both species composition and biovolume gradually changed across a gradient of resources and conditions and hence, the scenario in each individual lake was unique with patterns at different temporal and spatial scales. More than 35 filamentous and colonial morphospecies constituted the assemblages of Pampean lakes: nostocaleans and chroococcaleans were inversely correlated in the prevailing interannual 3-cycled patterns.
Afficher plus [+] Moins [-]Declines in heart rate variability associated with short-term PM2.5 exposure were modified by blood pressure control and treatment: A multi-city panel study in China Texte intégral
2021
Xing, Xiaolong | Liu, Fangchao | Yang, Xueli | Liu, Qiong | Wang, Xinyan | Lin, Zhennan | Huang, Keyong | Cao, Jie | Li, Jianxin | Fan, Meng | Chen, Xiaotian | Zhang, Cuizhen | Chen, Shufeng | Lu, Xiangfeng | Gu, Dongfeng | Huang, Jianfeng
Exposure to fine particulate matter (PM₂.₅) was associated with altered heart rate variability (HRV). However, whether blood pressure (BP) control and angiotensin II receptor blocker (ARB) treatment modifies the associations was seldom addressed. Therefore, we conducted a 3-phase panel study among 282 hypertensive subjects aged 35–74 years in four cities of China to address this issue. Real-time personal PM₂.₅ sampling and 24-h ambulatory electrocardiogram monitoring were performed repeatedly in 3 different seasons. Linear mixed-effects models were fitted overall and by control status of BP and ARB treatment to assess the associations between short-term PM₂.₅ exposure and HRV. The average hourly PM₂.₅ concentrations (Mean ± SD) ranged from 19.3 ± 18.2 μg/m³ to 99.4 ± 76.9 μg/m³ across study phases and cities. Generally, PM₂.₅ exposure was associated with decreased hourly and 24-h HRV. However, these adverse impacts were attenuated among patients with controlled BP (<140/90 mmHg). For each 10 μg/m³ increment in moving average of previous 2 days' (MA2d) PM₂.₅ exposure, 24-h SDNN (standard deviation of NN intervals) and rMSSD (root mean square of successive RR interval differences) decreased by 0.89% (95% CI: 0.19%–1.59%) and 2.98% (95% CI: 1.04%–4.89%) among patients with uncontrolled BP (≥140/90 mmHg), whereas no obvious declines were observed among those with controlled BP (Pdᵢffₑᵣₑₙcₑ = 0.007 and 0.022, respectively). Furthermore, ARB treatment alleviated or eliminated PM₂.₅-associated declines in hourly and 24-h HRV among those with uncontrolled BP. For instance, 24-h SDNN decreased by 1.31% (95% CI: 0.54%–2.07%) with a 10 μg/m³ increment in lag 2 days’ PM₂.₅ exposure in ARB nonusers, whereas no obvious changes were observed in ARB users (Pdᵢffₑᵣₑₙcₑ = 0.021). In conclusion, although PM₂.₅ exposure would decrease HRV, better BP control and ARB treatment could attenuate these adverse impacts, which provides supporting evidence for alleviating autonomic dysfunction of hypertension patients living in areas with high-level PM₂.₅.
Afficher plus [+] Moins [-]