Affiner votre recherche
Résultats 1001-1010 de 7,990
Multiple sequence types, virulence determinants and antimicrobial resistance genes in multidrug- and colistin-resistant Escherichia coli from agricultural and non-agricultural soils
2021
Furlan, João Pedro Rueda | Stehling, Eliana Guedes
In soils, the presence of clinically relevant bacteria carrying ARGs, including extended-spectrum β-lactamase- and plasmid-mediated AmpC β-lactamase-encoding genes, is an underestimated public health problem that requires more attention. For this investigation, 300 samples from agricultural and non-agricultural soils were used to obtain 41 MDR E. coli isolates, standing out the resistance to β-lactams, fluoroquinolones and colistin. Virulence genes related to diarrheagenic E. coli and extraintestinal pathogenic E. coli were detected. Several ARGs were found, highlighting the presence of at least one β-lactamase-encoding gene (blaTEM, blaCMY, blaSHV, blaOXA₋₁₋ₗᵢₖₑ, blaCTX₋M₋₂, and/or blaCTX₋M₋₁₅) in each isolate. Among the fluoroquinolone-resistant E. coli isolates, the plasmid-mediated quinolone resistance genes (qnrB and oqxA) and substitutions in the quinolone resistance-determining regions were detected. Some isolates were resistant to colistin (MICs of 4–8 mg/L) and, although no mcr-like gene was detected, substitutions in the two-component systems involving PhoP/PhoQ and PmrA/PmrB were found. Furthermore, the E. coli isolates presented plasmids and class 1 integrons, the last one detected in all isolates. The ARGs blaTEM, aadA and dfrA and the lpfA virulence-associated gene presented statistically significant differences (P < 0.05) in agricultural soils, while the blaOXA₋₁₋ₗᵢₖₑ gene presented a statistically significant difference in non-agricultural soils. Thirty-eight sequence types (STs) were identified among the isolates, spotlighting the 20 different STs that carried blaCMY and blaCTX₋M₋ₜyₚₑ genes and those commonly reported in infections worldwide. The occurrence of virulent, multidrug- and colistin-resistant E. coli isolates in soils could lead to contamination of surrounding environments and food, increasing the risk of human and animal exposure. Therefore, this study contributes to a better understanding of E. coli in soils and reinforces the importance of the One Health approach to antimicrobial resistance surveillance.
Afficher plus [+] Moins [-]Diurnal variation in BVOC emission and CO2 gas exchange from above- and belowground parts of two coniferous species and their responses to elevated O3
2021
Yu, Hao | Blande, James D.
Increased tropospheric ozone (O₃) concentrations in boreal forests affect the emission of biogenic volatile organic compounds (BVOCs), which play crucial roles in biosphere-atmosphere feedbacks. Although it has been well documented that BVOC emissions are altered in response to elevated O₃, consequent effects on the carbon budget have been largely unexplored. Here, we studied the effects of elevated O₃ (80 nmol mol⁻¹) on diurnal variation of BVOC emissions and gas exchange of CO₂ from above- and belowground parts of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) and further investigated effects on the carbon budget. In spring, elevated O₃ decreased BVOC emissions and net photosynthesis rate (Pn) from above-ground parts of both species. As BVOC emissions have a causal relationship with dormancy recovery, O₃-induced decreases in BVOC emissions indicated the inhibition of dormancy recovery. Contrary to the spring results, in summer BVOC emissions from aboveground parts were increased in response to elevated O₃ in both species. Decreases in Pn indicated O₃ stress. O₃-induced monoterpene emissions from aboveground were the main volatile defense response. Elevated O₃ had little effect on BVOC emissions from belowground parts of either species in spring or summer. In spring, elevated O₃ decreased the proportion of carbon emitted as BVOCs relative to that assimilated by photosynthesis (the proportion of BVOC-C loss) at the soil-plant system levels in both species. In summer, elevated O₃ resulted in a net CO₂–C loss at the soil-plant system level of Scots pine. During this process, O₃-induced BVOC-C loss can represent a significant fraction of carbon exchange between the atmosphere and Scots pine. In Norway spruce, the effects of O₃ were less pronounced. The current results highlight the need for prediction of BVOC emissions and their contributions to the carbon budget in boreal forests under O₃ stress.
Afficher plus [+] Moins [-]Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila
2021
Wu, Chao | Guo, Wen-Bo | Liu, Yue-Yue | Yang, Liuyan | Miao, Ai-Jun
In aquatic ecosystems, the calcium (Ca) concentration varies greatly. It is well known that Ca affects the aggregation of nanoparticles (NPs) and thus their bioaccumulation. Nevertheless, Ca also plays critical roles in various biological processes, whose effects on NP accumulation in aquatic organisms remain unclear. In this study, the effects of Ca on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the aquatic ciliate Tetrahymena thermophila were investigated. At all of the tested Ca concentrations, HemNPs were well dispersed in the experimental medium, excluding the possibility of Ca to influence HemNP bioaccumulation by aggregating the NPs. Instead, Ca was shown to induce the clathrin-mediated endocytosis and phagocytosis of HemNPs. Manipulation of the Ca speciation in the experimental medium as well as the influx and intracellular availability of Ca in T. thermophila indicated that HemNP uptake was regulated by the intracellular Ca level. The results of the proteomics analyses further showed that the binding of intracellular Ca to calmodulin altered the activity of proteins involved in clathrin-mediated endocytosis (calcineurin and dynamin) and phagocytosis (actin). Overall, the biologically inductive effects of Ca on NP accumulation in aquatic organisms should be considered when evaluating the environmental risks of NPs.
Afficher plus [+] Moins [-]Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells
2021
Zhang, Caiying | Lin, Tianjin | Nie, Gaohui | Hu, Ruiming | Pi, Shaoxing | Wei, Zejing | Wang, Chang | Xing, Chenghong | Hu, Guoliang
Cadmium (Cd) and excess molybdenum (Mo) are harmful to animals, but the combined nephrotoxic mechanism of Cd and Mo in duck remains poorly elucidated. To assess joint effects of Cd and Mo on pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells, cells were cultured with 3CdSO₄·8H₂O (4.0 μM), (NH₄)₆Mo₇O₂₄·4H₂O (500.0 μM), MCC950 (10.0 μM), BHA (100.0 μM) and combination of Cd and Mo or Cd, Mo and MCC950 or Cd, Mo and BHA for 12 h, and the joint cytotoxicity was explored. The results manifested that toxicity of non-equitoxic binary mixtures of Mo and Cd exhibited synergic interaction. Mo or/and Cd elevated ROS level, PTEN mRNA and protein levels, and decreased PI3K, AKT and p-AKT expression levels. Simultaneously, Mo or/and Cd upregulated ASC, NLRP3, NEK7, Caspase-1, GSDMA, GSDME, IL-18 and IL-1β mRNA levels and Caspase-1 p20, NLRP3, ASC, GSDMD protein levels, increased the percentage of pyroptotic cells, LDH, NO, IL-18 and IL-1β releases as well as relative conductivity. Moreover, NLRP3 inhibitor MCC950 and ROS scavenger BHA could ameliorate the above changed factors induced by Mo and Cd co-exposure. Collectively, our results reveal that combination of Mo and Cd synergistically cause oxidative stress and trigger pyroptosis via ROS/PTEN/PI3K/AKT axis in duck tubular epithelial cells.
Afficher plus [+] Moins [-]Exposure to pesticides and childhood leukemia risk: A systematic review and meta-analysis
2021
Karalexi, Maria A. | Tagkas, Christos F. | Markozannes, Georgios | Tseretopoulou, Xanthippi | Hernández, Antonio F. | Schüz, Joachim | Halldorsson, Thorhallur I. | Psaltopoulou, Theodora | Petridou, Eleni Th | Tzoulaki, Ioanna | Ntzani, Evangelia E.
Despite the abundance of epidemiological evidence concerning the association between pesticide exposure and adverse health outcomes including acute childhood leukemia (AL), evidence remains inconclusive, and is inherently limited by heterogeneous exposure assessment and multiple statistical testing. We performed a literature search of peer-reviewed studies, published until January 2021, without language restrictions. Summary odds ratios (OR) and 95% confidence intervals (CI) were derived from stratified random-effects meta-analyses by type of exposure and outcome, exposed populations and window of exposure to address the large heterogeneity of existing literature. Heterogeneity and small-study effects were also assessed. We identified 55 eligible studies (n = 48 case-control and n = 7 cohorts) from over 30 countries assessing >200 different exposures of pesticides (n = 160,924 participants). The summary OR for maternal environmental exposure to pesticides (broad term) during pregnancy and AL was 1.88 (95%CI: 1.15–3.08), reaching 2.51 for acute lymphoblastic leukemia (ALL; 95%CI: 1.39–4.55). Analysis by pesticide subtype yielded an increased risk for maternal herbicide (OR: 1.41, 95%CI: 1.00–1.99) and insecticide (OR: 1.60, 95%CI: 1.11–2.29) exposure during pregnancy and AL without heterogeneity (p = 0.12–0.34). Meta-analyses of infant leukemia were only feasible for maternal exposure to pesticides during pregnancy. Higher magnitude risks were observed for maternal pesticide exposure and infant ALL (OR: 2.18, 95%CI: 1.44–3.29), and the highest for infant acute myeloid leukemia (OR: 3.42, 95%CI: 1.98–5.91). Overall, the associations were stronger for maternal exposure during pregnancy compared to childhood exposure. For occupational or mixed exposures, parental, and specifically paternal, pesticide exposure was significantly associated with increased risk of AL (ORₚₐᵣₑₙₜₐₗ: 1.75, 95%CI: 1.08–2.85; ORₚₐₜₑᵣₙₐₗ: 1.20, 95%CI: 1.07–1.35). The epidemiological evidence, supported by mechanistic studies, suggests that pesticide exposure, mainly during pregnancy, increases the risk of childhood leukemia, particularly among infants. Sufficiently powered studies using repeated biomarker analyses are needed to confirm whether there is public health merit in reducing prenatal pesticide exposure.
Afficher plus [+] Moins [-]Outdoor air pollution exposure and inter-relation of global cognitive performance and emotional distress in older women
2021
Petkus, Andrew J. | Wang, Xinhui | Beavers, Daniel P. | Chui, Helena C. | Espeland, Mark A. | Gatz, Margaret | Gruenewald, Tara | Kaufman, Joel D. | Manson, JoAnn E. | Resnick, Susan M. | Stewart, James D. | Wellenius, Gregory A. | Whitsel, Eric A. | Widaman, Keith | Younan, Diana | Chen, Jiu-Chiuan
The interrelationships among long-term ambient air pollution exposure, emotional distress and cognitive decline in older adulthood remain unclear. Long-term exposure may impact cognitive performance and subsequently impact emotional health. Conversely, exposure may initially be associated with emotional distress followed by declines in cognitive performance. Here we tested the inter-relationship between global cognitive ability, emotional distress, and exposure to PM₂.₅ (particulate matter with aerodynamic diameter <2.5 μm) and NO₂ (nitrogen dioxide) in 6118 older women (aged 70.6 ± 3.8 years) from the Women’s Health Initiative Memory Study. Annual exposure to PM₂.₅ (interquartile range [IQR] = 3.37 μg/m³) and NO₂ (IQR = 9.00 ppb) was estimated at the participant’s residence using regionalized national universal kriging models and averaged over the 3-year period before the baseline assessment. Using structural equation mediation models, a latent factor capturing emotional distress was constructed using item-level data from the 6-item Center for Epidemiological Studies Depression Scale and the Short Form Health Survey Emotional Well-Being scale at baseline and one-year follow-up. Trajectories of global cognitive performance, assessed by the Modified-Mini Mental State Examination (3MS) annually up to 12 years, were estimated. All effects reported were adjusted for important confounders. Increases in PM₂.₅ (β = -0.144 per IQR; 95% CI = −0.261; −0.028) and NO₂ (β = −0.157 per IQR; 95% CI = −0.291; −0.022) were associated with lower initial 3MS performance. Lower 3MS performance was associated with increased emotional distress (β = −0.008; 95% CI = −0.015; −0.002) over the subsequent year. Significant indirect effect of both exposures on increases in emotional distress mediated by exposure effects on worse global cognitive performance were present. No statistically significant indirect associations were found between exposures and 3MS trajectories putatively mediated by baseline emotional distress. Our study findings support cognitive aging processes as a mediator of the association between PM₂.₅ and NO₂ exposure and emotional distress in later-life.
Afficher plus [+] Moins [-]Tissue distribution and health risk of trace elements in East Asian finless porpoises
2021
Tian, Jiashen | Gan, Zhiwei | Sanganyado, Edmond | Lu, Zhichuang | Wu, Jinhao | Han, Jiabo | Liu, Wenhua
We investigated the tissue distribution, trophic transfer, and ecological risk of 13 trace elements in 26 East Asian finless porpoises (Neophocaena asiaeorientalis sunameri), an endangered species found in the Liaodong Bay and the north Yellow Sea. All the investigated trace elements were detected in the tissue and food web of the East Asian finless porpoises. The concentrations of the potentially toxic elements were 2.37 × 10⁻⁵ – 754 mg kg⁻¹ dry weight (dw) in stranded porpoises and 0.01–159 mg kg⁻¹ dw in their food web. Tissue-specific distribution of the trace elements generally ranked as: liver > kidney > heart > lung > muscle. Zn was the dominant contaminant in the five investigated tissues. Significant positive correlations were found between body length or age and some trace elements, especially Cd. Adults (≥2 years old) presented higher concentrations of most of the trace elements than juveniles (<2 years old). Sex-dependent distribution of the trace elements was insignificant except for Mn, Ni, and Zn in muscle and renal tissue. As, Cu, Mn, Ni, Pb, and V biodiluted across the East Asian finless porpoise food web while Zn biomagnified. However, Hg, Cd, Co, Cr, Se, and Sn did not exhibit apparent trophic transfer trends. Overall, ecological risk assessment of trace elements in East Asian finless porpoises suggested that greater attention should be given to Hg, As, Cd, and Se.
Afficher plus [+] Moins [-]Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China
2021
Ma, Yiran | Fu, Shaqi | Gao, Song | Zhang, Shuwei | Che, Xiang | Wang, Qiaoming | Jiao, Zheng
The synthetic resin industry plays an important role in Volatile organic compounds (VOCs) emissions from industrial sources. However, owing to various products and their different emission characteristics, it is extremely difficult to study the source profiles of synthetic resins. In this study, the product-based pollution characteristics of VOCs from eight synthetic resin enterprises were investigated in Shanghai, China. Up to 133 VOCs were identified, including 106 based on the Photochemical Assessment Monitoring Stations (PAMS) and the Toxic Organics (TO-15) methods, and the remaining 27 were identified based on the new mass spectrometry analysis method. Aromatics (39.7%) and oxygenated VOCs (29.9%) accounted for a relatively high proportion in the synthetic resin industry. The product-based source profiles of each process unit are compiled. Generally, 1,4-dioxane, methyl isobutyl ketone, toluene, benzene, styrene, propane, and dichloromethane are the most abundant species in synthetic resin. Furthermore, the product-based ozone formation potentials (OFPs) and sources reactivity (SR) were calculated, the synthetic resin industry SR range from 0.3 g g⁻¹ to 4.6 g g⁻¹. Results suggest that toluene, benzene, styrene, propylene, ethylene, and oxygenated VOCs (including 1,4-dioxane, methyl isobutyl ketone, and aldehyde) should be preferentially controlled to reduce the OFPs. A three-level classification was established to evaluate the degree of photochemical pollution in different industries. Emission factors were calculated and ranked for eight synthetic resins. A VOC emission inventory of Chinese synthetic resin from 2005 to 2018 was compiled. It is estimated that the Chinese synthetic resin emitted 23.96 Gg of VOCs in 2018. In this study, a product-based VOC source profile and emission inventory of the synthetic resin industry were established for the first time. Finally, combined with product types, processes, and processing equipment, feasible recommendations for reducing VOC emissions in the synthetic resin industry are proposed.
Afficher plus [+] Moins [-]Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax
2021
Pinzone, Marianna | Cransveld, Alice | Tessier, Emmanuel | Bérail, Sylvain | Schnitzler, Joseph | Dāsa, Kr̥shṇā | Amouroux, David
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ¹⁹⁹Hg and δ²⁰²Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination.We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ¹⁹⁹Hg and δ²⁰²Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs.The first important finding of this study showed an increase of both %MeHg and δ²⁰²Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ²⁰²Hg) and mass-independent (MIF, Δ¹⁹⁹Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0–1‰ and MIF, 0–0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass.Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study’s major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Afficher plus [+] Moins [-]Microplastic pollution in the Weser estuary and the German North Sea
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas H. | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11–500 μm fraction) and net sampling (500–5000 μm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11–500 μm fraction (2.3 × 10¹ − 9.7 × 10³ MP m⁻³), with the polymer cluster acrylates/polyurethanes(PUR)/varnish being dominant. The >500 μm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.
Afficher plus [+] Moins [-]