Affiner votre recherche
Résultats 1011-1020 de 8,010
Highly effective remediation of high-arsenic wastewater using red mud through formation of AlAsO4@silicate precipitate Texte intégral
2021
Lu, Zhixu | Qi, Xianjin | Zhu, Xing | Li, Xuezhu | Li, Kongzhai | Wang, Hua
High-arsenic wastewater derived from the metallurgical industry of nonferrous minerals is one of the most dangerous arsenic (As) sources that usually follow the emission of massive hazardous arsenic-bearing wastes. Considering the properties of red mud (RM), we propose an alternative and environmentally friendly method for the efficient remediation of high-arsenic wastewater using RM through formation of AlAsO₄@silicate precipitate, aiming at ''zero-emission of hazardous solid waste''. The results show nearly 100% of arsenic could be stepwisely removed from high-arsenic wastewater and reduce the arsenic concentration from 6100 mg/L to 40 μg/L using RM at room temperature. The highest arsenic removal capacity of RM reaches 101.5 mg/g at a RM-to-wastewater ratio of 40 g/L due to the superior arsenic adsorption and the co-precipitation of arsenate and Al³⁺ to form insoluble aluminum arsenate. The silicate shell of arsenic-loaded RM created at an alkaline condition acts as an arsenic stabilizer, resulting in a leached arsenic concentration of 1.2 mg/L in TCLP tests. RM acts as a highly effective arsenic remover and stabilizer for the disposal of high-arsenic wastewater. It shows great potential for the remediation of wastewater containing heavy metals with varying concentrations to produce clean water available for industrial purpose.
Afficher plus [+] Moins [-]Effect of salinity and algae biomass on mercury cycling genes and bacterial communities in sediments under mercury contamination: Implications of the mercury cycle in arid regions Texte intégral
2021
Song, Wenjuan | Xiong, Heigang | Qi, Ran | Wang, Shuzhi | Yang, Yuyi
Lakes in arid regions are experiencing mercury pollution via air deposition and surface runoff, posing a threat to ecosystem safety and human health. Furthermore, salinity and organic matter input could influence the mercury cycle and composition of bacterial communities in the sediment. In this study, the effects of salinity and algae biomass as an important organic matter on the genes (merA and hgcA) involved in the mercury cycle under mercury contamination were investigated. Archaeal merA and hgcA were not detected in sediments of lake microcosms, indicating that bacteria rather than archaea played a crucial role in mercury reduction and methylation. The high content of mercury (300 ng g⁻¹) could reduce the abundance of both merA and hgcA. The effects of salinity and algae biomass on mercury cycling genes depended on the gene type and dose. A higher input of algae biomass (250 mg L⁻¹) led to an increase of merA abundance, but a decrease of hgcA abundance. All high inputs of mercury, salinity, and algae biomass decreased the richness and diversity of bacterial communities in sediment. Further analysis indicated that higher mercury (300 ng g⁻¹) led to an increased relative abundance of mercury methylators, such as Ruminococcaceae, Bacteroidaceae, and Veillonellaceae. Under saline conditions (10 and 30 g L⁻¹), the richness of specific bacteria associated with mercury reduction (Halomonadaceae) and methylation (Syntrophomonadaceae) increased compared to the control. The input of algae biomass led to an increase in the specific bacterial communities associated with the mercury cycle and the richness of bacteria involved in the decomposition of organic matter. These results provide insight into mercury cycle-related genes and bacterial communities in the sediments of lakes in arid regions.
Afficher plus [+] Moins [-]Cadmium exposure alters expression of protective enzymes and protein processing genes in venom glands of the wolf spider Pardosa pseudoannulata Texte intégral
2021
Lv, Bo | Yang, Huilin | Peng, Yuan-de | Wang, Juan | Zeng, Zhi | Li, Na | Tang, Yun-e | Wang, Zhi | Song, Qi-sheng
Cadmium (Cd) pollution is currently the most serious type of heavy metal pollution throughout the world. Previous studies have shown that Cd elevates the mortality of paddy field spiders, but the lethal mechanism remains to be explored profoundly. In the present study, we measured the activities of protective enzymes (acetylcholinesterase, glutathione peroxidase, phenol oxidase) and a heavy metal chelating protein (metallothionein) in the pond wolf spider Pardosa pseudoannulata after Cd exposure. The results indicated that Cd initially increased the enzyme activities and protein concentration of the spider after 10- and 20-day exposure before inhibiting them at 30-day exposure. Further analysis showed that the enzyme activities in the cephalothorax were inhibited to some extent. Since the cephalothorax region contains important venom glands, we performed transcriptome sequencing (RNA-seq) analysis of the venom glands collected from the spiders after long-term Cd exposure. RNA-seq yielded a total of 2826 differentially expressed genes (DEGs), and most of the DEGs were annotated into the process of protein synthesis, processing and degradation. Furthermore, a mass of genes involved in protein recognition and endoplasmic reticulum (ER) -associated protein degradation were down-regulated. The reduction of protease activities supports the view that protein synthesis and degradation in organelles and cytoplasm were dramatically inhibited. Collectively, our outcomes illustrate that Cd poses adverse effects on the expression of protective enzymes and protein, which potentially down-regulates the immune function in the venom glands of the spiders via the alteration of protein processing and degradation in the ER.
Afficher plus [+] Moins [-]Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume Texte intégral
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume Texte intégral
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s⁻¹. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m⁻²), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm⁻³ (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s⁻¹) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna.
Afficher plus [+] Moins [-]Microplastic retention by marine vegetated canopies: Simulations with seagrass meadows in a hydraulic flume Texte intégral
2021
de los Santos, Carmen B. | Krång, Anna-Sara | Infantes, Eduardo
Marine canopies formed by seagrass and other coastal vegetated ecosystems could act as sinks of microplastics for being efficient particle traps. Here we investigated for the first time the occurrence of microplastic retention by marine canopies in a hydraulic flume under unidirectional flow velocities from 2 to 30 cm s−1. We used as model canopy-forming species the seagrass Zostera marina with four canopy shoot density (0, 50, 100, 200 shoots m−2), and we used as microplastic particles industrial pristine pellets with specific densities from 0.90 to 1.34 g cm−3 (polypropylene PP; polystyrene PS; polyamide 6 PA; and polyethylene terephthalate PET). Overall, microplastics particles transported with the flow were retained in the seagrass canopies but not in bare sand. While seagrass canopies retained floating microplastics (PP) only at low velocities (<12 cm s−1) due to a barrier created by the canopy touching the water surface, the retention of sinking particles (PS, PA, PET) occurred across a wider range of flow velocities. Our simulations revealed that less dense sinking particles (PS) might escape from the canopy at high velocities, while denser sinking particles can be trapped in scouring areas created by erosive processes around the eelgrass shoots. Our results show that marine canopies might act as potential barriers or sinks for microplastics at certain bio-physical conditions, with the probability of retention generally increasing with the seagrass shoot density and polymer specific density and decreasing with the flow velocity. We conclude that seagrass meadows, and other aquatic canopy-forming ecosystems, should be prioritized habitats in assessment of microplastic exposure and impact on coastal areas since they may accumulate high concentration of microplastic particles that could affect associated fauna. | publishedVersion
Afficher plus [+] Moins [-]Pyriproxyfen induces intracellular calcium overload and alters antioxidant defenses in Danio rerio testis that may influence ongoing spermatogenesis Texte intégral
2021
Staldoni de Oliveira, Vanessa | Gomes Castro, Allisson Jhonatan | Marins, Katiuska | Bittencourt Mendes, Ana Karla | Araújo Leite, Gabriel Adan | Zamoner, Ariane | Van Der Kraak, Glen | Mena Barreto Silva, Fátima Regina
We investigated the in vitro effects of pyriproxyfen on ionic balance in the testis of the zebrafish by measuring ⁴⁵Ca²⁺ influx. In vivo pyriproxyfen treatment was carried out to study oxidative stress, and conduct morphological analysis of the testis and liver. Whole testes were incubated in vitro with/without pyriproxyfen (10⁻¹², 10⁻⁹ or 10⁻⁶ M; 30 min) and ⁴⁵Ca²⁺ influx determined. To study pyriproxyfen’s mechanism of action, inhibitors/activators of ionic channels or pumps/exchangers, protein kinase inhibitors or a calcium chelator were added 15 min before the addition of ⁴⁵Ca²⁺ and pyriproxyfen. We evaluated the in vivo effects of 7 day exposure to waterborne pyriproxyfen (10⁻⁹ M) on reactive oxygen species (ROS) formation, lipid peroxidation, and reduced glutathione content (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and γ-glutamyltransferase (GGT) activity. Morphological analyses of the testis and liver were carried out after in vivo exposure of D. rerio to pyriproxyfen. Pyriproxyfen increased ⁴⁵Ca²⁺ influx by opening the voltage-dependent T-type channels (T-type VDCC), inhibiting sarco/endoplasmic reticulum ⁴⁵Ca²⁺-ATPase (SERCA) and the NCX exchanger (forward mode) and by mobilizing calcium from stores. The involvement of potassium channels and protein kinase C (PKC) was also demonstrated in pyriproxyfen-induced intracellular calcium elevation. In vivo pyriproxyfen treatment of D. rerio increased lipid peroxidation, decreased GSH content and increased GST activity in testes, in addition to increasing the number and size of spermatogonia cysts and inducing hepatocyte basophilia and dilation of blood vessels in the liver. The toxicity of pyriproxyfen is mediated by calcium overload, increased lipid peroxidation, and a diminished antioxidant capacity in the testis, due to GSH depletion, and altered spermatogenesis. The development of high basophilia in the liver suggests that pyriproxyfen may have estrogenic activity, possibly acting as an endocrine-disruptor. These findings indicate that these alterations may contribute to pyriproxyfen toxicity and spermatogenesis disruption.
Afficher plus [+] Moins [-]Multiphase CFD simulation of the nearshore spilled oil behaviors Texte intégral
2021
Raznahan, Mohammadmehdi | An, Chunjiang | Li, S Samuel | Geng, Xiaolong | Boufadel, Michel
Oil spills are a serious environmental problem. To better support risk assessment and pollution control for oil spills, a good understanding of oil transport in the environment is required. This study focused on the numerical simulation of the nearshore oil behaviors based on computational fluid dynamics. Based on the Navier-Stokes momentum equations for an incompressible viscous fluid and volume of fluid (VOF) method, a 3D numerical model of three-phase transient flow was developed. The wave number, averaged flow velocity and oil properties would affect the oil spread extent and the oil volume fraction. The higher the averaged flow velocity and wave number, the lower the oil concentration, and the faster the horizontal movement of the oil. The spilled oil may move to contact the seafloor by increasing the averaged flow velocity at the inlet boundary. Through increasing the wave number, the oil would stay near the water surface. In the nearshore, where the wave is the main seawater motion, the oil containment boom should be set preferentially to the direction of wave transmission for oil cleaning. This study shows that by doubling the wave number and increasing the averaged flow velocity (ten times) at the same time, the maximum oil volume fraction would be reduced by around 32%. Finally, the water temperature had no significant impact on the oil migration, and the impact of evaporation should be considered in the simulation.
Afficher plus [+] Moins [-]Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure Texte intégral
2021
Conti, Ilaria | Simioni, Carolina | Varano, Gabriele | Brenna, Cinzia | Costanzi, Eva | Neri, Luca Maria
Plastic pollution is an emerging problem and is a consequence of the post-consumer plastic waste accumulation in the environment coupled to mismanaged waste programmes. Countries are counteracting the continuous growth of plastic litter with different strategies: introducing bans and limits on both plastic items and materials, promoting plastic recycling and recovery strategies and encouraging voluntary clean up actions, as well as raising public awareness. However, the toxicity of plastics to the environment and organisms is not only related to their polymer chains, but also to the fact that plastic materials contain hazardous additives and can adsorb environmental pollutants (i.e. heavy metals and persistent organic contaminants, respectively). The plastic/additives/pollutants combination may be ingested by marine organisms and then enter in the food chain. Therefore, legislation for additives and contaminants is crucial both to reduce environmental pollution and their toxic effects on organisms, which of course includes humans. In this review, the current policies on plastics and related contaminants are described focusing on current laws. Moreover, recommendations for seafood consumption are suggested, since each fish or mollusc eaten may potentially result in plastic particles, additives or contaminants ingestion.
Afficher plus [+] Moins [-]Selected technology-critical elements as indicators of anthropogenic groundwater contamination Texte intégral
2021
Amiel, Nitai | Dror, Ishai | Zurieli, Arik | Livshitz, Yakov | Reshef, Guy | Berkowitz, Brian
Groundwater contamination originating from anthropogenic industrial activities is a global concern, adversely impacting health of living organisms and affecting natural ecosystems. Monitoring contamination in a complex groundwater system is often limited by sparse data and poor hydrogeological delineation, so that numerous indicators (organic, inorganic, isotopic) are frequently used simultaneously to reduce uncertainty. We suggest that selected Technology-Critical Elements (TCEs), which are usually found in very low concentrations in the groundwater environment, might serve as contamination indicators that can be monitored through aquifer systems. Here, we demonstrate the use of selected TCEs (in particular, Y, Rh, Tl, Ga, and Ge) as indicators for monitoring anthropogenic groundwater contamination in two different groundwater systems, near the Dead Sea, Israel. Using these TCEs, we show that the sources of local groundwater contamination are phosphogypsum ponds located adjacent to fertilizer plants in two industrial areas. In addition, we monitored the spatial distribution of the contaminant plume to determine the extent of well and spring contamination in the region. Results show significant contamination of the groundwater beneath both fertilizer plants, leading to contamination of a series of wells and two natural springs. The water in these springs contains elevated concentrations of toxic metals; U and Tl levels, among others, are above the maximum concentration limits for drinking water.
Afficher plus [+] Moins [-]Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification Texte intégral
2021
Chaparro, Marcos A.E.
Pollution-tolerant lichens are recognized ecological indicators of air pollution in cities, which can also collect airborne anthropogenic particles in their tissues. Harmful (sub)micron-sized magnetites are a ubiquitous component of air particle pollution, adversely impacting human health. In this work, in situ magnetic susceptibility κᵢₛ of well-characterized ultrafine magnetite and lichen thalli were measured to quantify the amount of airborne magnetic particles (AMP) after calibration and to assess the lichen's decontamination over time. Up to 2850 magnetic measurements were carried out in twenty-nine transplanted lichens (collected in urban and clean areas) from winter 2020 to winter 2021. Before the transplants, their initial κᵢₛ values were 0.23–9.45 × 10⁻⁵ SI, representing AMP contents of 0.1–4.6 mg in lichen thalli. After lichens were transplanted to a shared site, the magnetic signals evidenced short-term increases and long-term decreases. After three, five and nine months, the AMP loss is more pronounced for transplanted lichens from polluted (e.g., AMP_5-months loss = 0.59 mg) than clean (= 0.08 mg) sites. Rainfall influenced the lichen's decontamination between seasons. In situ measurements and lichens offer a valued and time-saving methodology for biomonitoring harmful airborne particles simply and effectively.
Afficher plus [+] Moins [-]Quantification of Pb pollution sources in complex urban environments through a multi-source isotope mixing model based on Pb isotopes in lichens and road sediment Texte intégral
2021
Dietrich, Matthew | Krekeler, Mark P.S. | Kousehlar, Masoomeh | Widom, Elisabeth
Despite a growing focus on anthropogenic toxic metal pollution in urban environments, few studies have addressed the problem of quantification when more than two pollution sources are likely present, particularly within complex urban settings in the United States (U.S.). In this study, we utilize the MixSIAR package in R for source apportionment based on Pb isotopic signatures in lichen and road sediment in two urban-industrial centers in SW Ohio (OH). We show that ranges of pollutant contributions are more useful than only visualizing mean or raw values of source apportionment, because this avoids overinterpretation of data when certain sources have a large range of uncertainty. We point out both the dominance of industrial pollution as well as the legacy of leaded gasoline pollution in typical mid-sized U.S. cities, which is evident in both road sediment and lichens. Leaded gasoline contribution to Pb in Middletown, OH lichens mostly vary between ~10 and 25%, while in Hamilton, OH the contribution to lichens and road sediment tends to be relatively negligible except for two road sediment samples and one lichen sample, where median contributions are ~20–30%. Industrial combustion pollution source contributions vary between ~25 and 75% in Hamilton, and ~50–100% in Middletown, OH. Furthermore, comparing pollution sources in lichens to modern particulate matter can provide a record of how pollutant sources change over time, such as our traffic lichen (Sample Li-9) plotting closer to leaded gasoline on a bivariate mixing diagram than modern traffic particulate matter, or our coke plant lichen containing slightly less Pb contribution from industrial combustion sources relative to modern coke plant particulate matter. Lastly, when applicable, multi-source mixing models should be complimented in future studies with additional isotopic source tracers such as Cu, Zn, Nd, and Os to further elucidate unique sources of metal pollutants in addition to Pb.
Afficher plus [+] Moins [-]