Affiner votre recherche
Résultats 1021-1030 de 1,299
Study of Pyrene Adsorption on Two Brazilian Soils
2011
Teixeira, Silvio César Godinho | Ziolli, Roberta Lourenço | da Costa Marques, Mônica Regina | Pérez, Daniel Vidal
This study investigated pyrene adsorption on two contrasting Brazilian soils: a Kandiudult and a Vertisol. It was found that the time taken to reach thermodynamic equilibrium depended on the soil type. The curves for different pyrene-to-soil mass ratios for Vertisol soil showed significant differences. This is probably related to the presence of 2:1 clays that may increase the adsorption of pyrene due to the resulting interlamellar space. The adsorption of pyrene on the Kandiudult showed, in general, good agreement with the Langmuir isotherm. In the case of the Vertisol, there was good agreement with the linear isotherm. The kinetic model that best explains the adsorption in Kandiudult was the pseudo second-order model. For the Vertisol, the Morris Weber model best explains the behavior of pyrene.
Afficher plus [+] Moins [-]Development of Regression-Based Models to Predict Fecal Bacteria Numbers at Select Sites within the Illinois River Watershed, Arkansas and Oklahoma, USA
2011
David, Morgan M. | Haggard, Brian E.
The Illinois River Watershed is a multi-facet basin with ecological and economic importance to its local stakeholders in northwest Arkansas and northeast Oklahoma, USA. The numbers, transport and sources of fecal bacteria in streams was identified as a research priority of the USDA NRI Water and Watershed Program in 2006, and the objective of this study was to evaluate the relation between fecal bacteria and other measured physicochemical parameters in water samples collected from selected sites throughout the Illinois River Watershed. An existing database (i.e., National Water Information Systems, NWIS) from the US Geological Survey (USGS) was used in this project. The data obtained includes discharge, pH, temperature, dissolved oxygen, Escherichia coli (E. coli), fecal coliform, and fecal streptococci among several other physic-chemical parameters. A synthetic model, based on multi-regression analysis, was developed to predict fecal bacteria numbers at these selected sites based on available USGS NWIS data, and the multiple regressions were significant at almost every site for all three bacteria groups. However, the physicochemical parameters used in the equations were very different across sites and fecal bacteria groups, suggesting that the development of such predictive models is site and bacteria group specific even within one watershed.
Afficher plus [+] Moins [-]Modelling the Density Contrast Effect on a Chlorinated Hydrocarbon Plume Reaching the Shore Line
2011
Mastrocicco, Micòl | Colombani, Nicolò | Petitta, Marco
Diffused petroleum and chlorinated hydrocarbon contamination was detected in a sandy aquifer below a chemical plant in Southern Italy. The contamination was due to underground leaking tanks and pipes. The site is located near the shore line and is bordered by canals which, in combination with pumping wells, control the groundwater flow direction toward the sea. In this study, a comprehensive three-dimensional flow model was developed and calibrated to simulate the general groundwater flow system and to individuate a flow line. On this latter, a detailed field investigation was performed in order to determine the fate of dissolved hydrocarbons. Depth profiles obtained from multi-level samplers located along the modelled flow line, including measurements of hydrocarbons, all major ions and dissolved gasses, were used to constrain the conceptual model. These data were then included into a two-dimensional transport model in order to verify the efficacy of the hydraulic barrier (HB) in preventing the hydrocarbon plume to reach the shore line. Two different approaches were used in the transport simulation, one accounting for density-dependent flow and the other not. The calibrated models show that the plume length and consequently, the submarine groundwater discharge of contaminants is slightly different for the two approaches. For the simulation not accounting for the density contrast between freshwater and saltwater, the mass of contaminant discharged downstream to the HB was underestimated and also the reconstructed plume geometry was different than the observed. Moreover, the reconstruction of the saltwater intrusion interface (SWII) with the two different approaches was substantially different. This study demonstrates that at field site, variable density processes should be carefully taken into account not only when the modelling is devoted to the reconstruction of the SWII but also when the modelling is targeting the fate of hydrocarbons at sites affected by SWII, in order to provide accurate data on which soundly environmental management of the coastal zone can be based.
Afficher plus [+] Moins [-]Study of the Relationship between Elevated Concentrations of Photochemical Oxidants and Prevailing Meteorological Conditions in the North Kanto Area, Japan
2011
Hosoi, Shinri | Yoshikado, Hiroshi | Gaidajis, George | Sakamoto, Kazuhiko
Ambient concentrations of photochemical oxidants (Ox) averaged throughout all ambient monitoring stations in Japan have increased slightly during the past two decades despite decreasing emissions of oxidant precursors such as NOx and hydrocarbons. In the Kanto area of Japan, which is heavily populated and industrialized, Ox concentrations are often high, especially in late spring and summer, and a photochemical smog warning is frequently issued. Although the north Kanto area is about 150Â km from the southern metropolitan area, and, moreover, local emissions of precursors are limited because of its agricultural and forested character, high Ox concentration levels (>120Â ppbv (1-h average)) are often observed there. We analyzed the relationship between the occurrence of high Ox concentrations in the north Kanto and meteorological conditions. By combining the regional wind pattern and the presence of the inversion layer in the atmospheric boundary layer, we identified five distinct meteorological patterns. High Ox concentrations in the north Kanto area were associated with a southerly extended sea breeze accompanied by a subsidence inversion layer. We inferred that the transport of Ox from the southern urban area by southerly winds and restricted dispersion below the inversion layer can lead to high Ox concentrations in the north Kanto area. This meteorological condition is associated with the presence of a high pressure system centered in the southeastern or eastern sector offshore of the Kanto area. Thus, Ox concentrations in the north Kanto area, where emissions of precursors are relatively low, can easily increase to very high levels under favorable meteorological conditions.
Afficher plus [+] Moins [-]Mercury Speciation in the Water of Minamata Bay, Japan
2011
Matsuyama, Akito | Eguchi, Tomomi | Sonoda, Ikuko | Tada, Akihide | Yano, Shinichirou | Tai, Akira | Marumoto, Kohji | Tomiyasu, Takashi | Akagi, Hirokatsu
The speciation of mercury (Hg) in Minamata Bay (Japan) was studied over a 2-year period (2006–2008). Concentrations of dissolved total Hg, dissolved methylmercury (MeHg), particulate total Hg, and suspended solids were 0.43 ± 0.14 ng/l (mean ± standard deviation), 0.10 ± 0.06 ng/l, 3.04 ± 2.96 ng/l, and 5.94 ± 2.10 mg/l, respectively. Correlations between concentrations of particulate total Hg and suspended solids at four depths (surface: 0 m; mid-depth: −6 m, −10 m; and bottom +1 m layer) were only significant in the bottom +1 m layer. The mean dissolved MeHg concentration and the ratio of dissolved MeHg to dissolved total Hg were considerably higher in summer compared to other seasons. The data suggest that bottom sediment was not the sole source of MeHg, and that MeHg may be produced in the water column by the conversion of divalent Hg eluted from resuspended bottom sediment. The correlation between seawater characteristics such as salinity, temperature, dissolved oxygen (DO), and dissolved MeHg concentration indicates that Hg methylation could be influenced by the heterotrophic activity of microorganisms in the seawater. In particular, inverse correlations were observed between DO, salinity, and MeHg concentration. However, dissolved MeHg concentrations did not correlate with seawater characteristics such as pH or chlorophyll-a.
Afficher plus [+] Moins [-]Mercury Extraction from Contaminated Soils by L-Cysteine: Species Dependency and Transformation Processes
2011
Bollen, Anne | Biester, Harald
A new approach in soil remediation washing techniques is the use of L-cysteine based on the formation of organic complexes. In this study, the applicability of L-cysteine for the mobilisation of different mercury species from contaminated soils was evaluated. Soils were treated with L-cysteine solutions with S–Hg molar ratios of 1, 2, 10, 20, 100 and 200. In 24 h batch experiments, leachates with water could mobilise 1% of Hg. The addition of L-cysteine led to an increase of Hg mobilisation of 42% for soils with inorganically bound Hg. In column experiments, the maximum Hg removal rate was 75%. For soils with organically bound Hg or HgS, only 1–5% of Hg was mobilised. Thus, the extraction of Hg from soils with L-cysteine is highly dependent on the Hg-binding form. Hg speciation analyses of leachates indicate that Hg–L-cysteine complexes are labile complexes which can be easily transformed. Soil samples speciation analysis revealed that reduction to elemental mercury takes place at low S–Hg ratios (1 to 10), assumingly by microbial activity. At higher S–Hg ratios of 10 and 100, precipitation of stable Hg–S complexes could be observed. These species transformation processes are limitations for considering L-cysteine leaching as a remediation strategy.
Afficher plus [+] Moins [-]Copper Ions Adsorption from Aqueous Medium Using the Biosorbent Sugarcane Bagasse In Natura and Chemically Modified
2011
Dos Santos, Vanessa C. G. | De Souza, João V. T. M. | Tarley, Cesar R. T. | Caetano, Josiane | Dragunski, Douglas Cardoso
This study evaluated the copper ion adsorption capacity of sugarcane bagasse in natura and chemically modified with citric acid and sodium hydroxide. Adsorption analyses in batch system were carried out in function of contact time with the adsorbent and adsorbate concentration. Flame atomic absorption spectrometry was used to determine the copper concentrations. Adsorption experimental data were fitted to Langmuir and Freundlich linear models, and the maximum adsorption capacity was estimated for copper ions in function of modifications. The chemical modifications were confirmed at 1,730 cm−1 peak in infrared spectra, referring to the carboxylate groups. The required time for the adsorption to reach equilibrium was 24 h and the kinetics follows the behavior described by the pseudo-second order equation. Besides, a significant improvement of the copper adsorption has been observed after the bagasse treatment, where the maximum adsorption capacity was 31.53 mg g−1 for copper using modified bagasse with nitric acid according to Langmuir isotherm linear model. The high uptake of copper ions from aqueous medium verified by chemically modified sugarcane bagasse makes this material an attractive alternative for effluent treatment and avoids environmental contamination.
Afficher plus [+] Moins [-]Biodegradation of Methyl Tert-butyl Ether in a Bioreactor using Immobilized Methylibium petroleiphilum PM1 Cells
2011
Cheng, Zhuo-Wei | Chen, Jian-Meng | Chen, Dong-Zhi | Zhang, Li Li
Methylibium petroleiphilum PM1, which is capable of degrading of methyl tert-butyl ether (MTBE), was immobilized in calcium alginate gel beads. Various applications were explored to increase the mechanical strength of these gel beads. The introduction of 0.3 mol/L calcium chloride into the crosslinking solution, 0.002 mol/L calcium chloride into the growth medium, and 0.2% polyethyleneimine (PEI) as chemical crosslinking agent increased the stability of the Ca-alginate gel beads under the operation conditions of the bioreactor. The degradation rates of MTBE by the immobilized cells in the bioreactor system operated in batch and continuous mode , respectively, were compared. A MTBE biodegradation rate of 5.79 mg/L·h was reached for over 400 h (50 batches), and the immobilized cells in the bioreactor removed >96% MTBE during 50 days of operation. Molecular analysis of the PM1 cells revealed that microbial growth occurred predominantly as microcolonies in the outer area of the beads during the first 20 days of operation. The results of this study show that a continuous-mode, fixed-bed bioreactor reactor coupled with PM1-immobilized cells is a promising technology for remediating MTBE-contaminated groundwater.
Afficher plus [+] Moins [-]Measurement of Radionuclides and Gamma-Ray Dose Rate in Soil and Transfer of Radionuclides from Soil to Vegetation, Vegetable of Some Northern Area of Pakistan Using γ-Ray Spectrometry
2011
Khan, Hasan M. | Ismail, M. | Khan, Khalid | Akhter, Perveen
The analysis of gamma emitters natural radionuclides, i.e., 226Ra, 232Th, and 40K, has been carried out in soil, vegetation, vegetable, and water samples collected from some Northern area of Pakistan, using gamma-ray spectrometry. The γ-ray spectrometry was carried out using high-purity Germanium detector coupled with a computer-based high-resolution multi-channel analyzer. The activity concentrations in soil ranges from 24.7 to 78.5 Bqâkg−1, 21.7 to 75.3 Bqâkg−1, and 298.5 to 570.8 Bqâkg−1 for 226Ra, 232Th, and 40K with the mean value of 42.1, 43.3, 9.5, and 418.3 Bqâkg−1, respectively. In the present analysis, 40K was the major radionuclide present in soil, vegetation, fruit, and vegetable samples. The concentration of 40K in vegetation sample varied from 646.6 to 869.6 Bqâkg−1 on dry weight basis. However, the concentration of 40K in fruit and vegetable samples varied from 34.0 to 123.3 Bqâkg−1 on fresh weight basis. In vegetation samples, along with 40K, 226Ra, and 232Th were also present in small amount. The transfer factors of these radionuclides from soil to vegetation, fruit, and vegetable were also studied. The transfer factors were found in the order: 40Kâ>â232Thâ≈â226Ra. The analysis of water samples showed activity concentrations values for all radionuclides below detection limit. The internal and external hazard indices were measured and found less than the safe limit of unity. The mean value of outdoor and indoor absorbed dose rate in air was found 64.61 and 77.54 nGyâh−1, respectively. The activity concentrations of radionuclides found in all samples during the current investigation were nominal. Therefore, they are not associated with any potential source of health hazard to the general public.
Afficher plus [+] Moins [-]Mixed Inorganic and Organic Nitrogen Addition Enhanced Extracellular Enzymatic Activities in a Subtropical Forest Soil in East China
2011
Guo, Peng | Wang, Congyan | Feng, Xiaoguang | Su, Minfei | Chee, Johny | Tian, Xingjun
To date, numerous studies have employed single type nitrogen (N) addition methods in reporting influences of N deposition on soil extracellular enzymatic activities (EEA) during litter decomposition in forest ecosystems. As natural atmospheric N deposition is a set of complex compounds including inorganic N and organic N, it is essential for investigating responses of soil EEA to various mixed N fertilization. In a subtropical forest stand in Zijin Mountain, East China, various N fertilizers with different inorganic N and organic N ratios were added to soils monthly from 2008 to 2009. Samples were harvested from N fertilized and control plots every 4 months. Subsequently, six EEA were assayed. A laboratory experiment was also conducted simultaneously. Both field and laboratory experiments showed that various mixed N fertilizations revealed different influences on soil EEA. Acceleration of most soil EEA by mixed N fertilization was greater than that of single N fertilization. The majority of soil extracellular enzymes exhibited the highest activities under mixed N fertilization, with the ratio of inorganic N to organic N at 3:7. These results suggested that N type and ratio of inorganic N and organic N were important factors controlling soil EEA, and the 3:7 ratio of inorganic N and organic N may be the optimum for soil EEA.
Afficher plus [+] Moins [-]