Affiner votre recherche
Résultats 1021-1030 de 5,143
Biocide triclosan impairs byssus formation in marine mussels Mytilus galloprovincialis
2018
Motta, C.M. | Tizzano, M. | Tagliafierro, A.M. | Simoniello, P. | Panzuto, R. | Esposito, L. | Migliaccio, V. | Rosati, L. | Avallone, B.
The effects of the biocide Triclosan, used in personal care products and known as a common environmental contaminant, on byssal apparatus were studied in the marine mussel Mytilus galloprovincialis. Experimental evidences indicated that an exposure for 7 days at a concentration of 10 μg/L induced marked alterations in the byssus gland resulting in a significant delay in byssus regrowth and in a decrease in threads resistance to traction. Such alterations in animals exposed to tidal and waves action would cause a significant loss in ecological fitness and severely impact on mussel survival. Triclosan release in coastal environments therefore should be more carefully monitored to prevent drastic consequences.
Afficher plus [+] Moins [-]Role of autophagy in environmental neurotoxicity
2018
Pellacani, C. | Costa, L.G.
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Afficher plus [+] Moins [-]2,2′,4,4′-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway
2018
You, Xinyue | Xi, Jing | Liu, Weiying | Cao, Yiyi | Tang, Weifeng | Zhang, Xinyu | Yu, Yingxin | Luan, Yang
2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), a representative congener of polybrominated diphenyl ethers in the environment, is known to have reproductive toxicity. However, the underlying mechanisms remain to be clarified, especially in in vivo systems. In the present study, we employed Caenorhabditis elegans to study the effects of BDE-47 on reproduction. Our results showed that BDE-47 impaired worm fecundity and induced germ cell apoptosis. To elucidate the mechanisms, DNA damage and oxidative stress induction were investigated by determining the numbers of foci formation in transgenic worms expressing HUS-1::GFP and the levels of reactive oxygen species, respectively. We found that BDE-47 induced oxidative stress but not DNA damage, and treatment with the antioxidant, N-acetyl-L-cysteine, completely abrogated BDE-47-induced germ cell apoptosis. In addition, the apoptosis was blocked in mutants carrying mek-1, sek-1 or abl-1 loss-of-function alleles, but not in the p53/cep-1 deficient worms, suggesting that the mitogen-activated protein kinase (MAPK) signaling cascade was essential for BDE-47-induced germ cell apoptosis and p53/cep-1 was not required. Moreover, the apoptosis in the strains deficient for DNA damage response was not suppressed under BDE-47 treatment. Overall, we demonstrated that BDE-47 could induce oxidative stress and subsequent germ cell apoptosis in Caenorhabditis elegans through a MAPK-mediated p53-independent pathway.
Afficher plus [+] Moins [-]Concentrations, spatial distributions, and congener profiles of polychlorinated dibenzo-p-dioxins and dibenzofurans around original plastic solid waste recovery sites in China
2018
Ding, Liang | Cai, Bingjie | Wang, Shui | Qu, Changsheng
The concentrations, profiles, and spatial distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and sediment samples from several typical plastic solid waste (PSW) recovery sites (particularly from areas in which PSW is burned openly) in China were investigated. The results showed that burning PSW directly influenced PCDD/F concentrations immediately around the burning area. All of the samples in which soil contained black burning residue, collected from immediately around burning areas, had PCDD/F concentrations (mean 21708 ng kg⁻¹) and toxic equivalent (TEQ) concentrations (mean 2140 ng I-TEQ kg⁻¹ or 1877 ng WHO₂₀₀₆-TEQ kg⁻¹) more than 100 times higher than the concentrations in samples collected away from burning areas (mean 222 ng kg⁻¹, 8.75 ng I-TEQ kg⁻¹, 7.96 ng WHO₂₀₀₆-TEQ kg⁻¹). Principal component analysis and hierarchical cluster analysis indicated that the PCDD/F concentrations in seven soil samples from near PSW burning areas were influenced by PSW burning but that the PCDD/Fs in these soil samples may have had other or multiple sources. PCDD/F distributions at PSW recovery sites have been investigated in few previous studies. The results presented here indicate that appropriate measures should be taken to decrease the ecological risks posed by PSW recovery and to prevent, control, and remediate PCDD/F and other chemical contamination caused by PSW recovery.
Afficher plus [+] Moins [-]Interspecific variation of essential and non-essential trace elements in sympatric seabirds
2018
Moura, Jailson F. | Tavares, Davi C. | Lemos, Leila S. | Acevedo-Trejos, Esteban | Saint’Pierre, Tatiana Dillenburg | Siciliano, Salvatore | Merico, Agostino
Chemical pollution is a growing issue for ocean ecosystems, threatening especially apex predators because they bioaccumulate persistent chemical pollutants such as non-essential trace elements. The trophic position is thus a key aspect when assessing the impacts of environmental pollution in marine organisms. Here we investigate the differences in the concentrations of essential (Cu, Cr, Se, and Zn) and non-essential elements (Hg, Al, As, Cd, and Sr), in muscular and hepatic tissues of four sympatric non-migratory seabirds (namely Sula leucogaster, Larus dominicanus, Fregata magnificens, and Thalasseus acuflavidus), which were found stranded along the Brazilian coast. The observed hepatic and muscular interspecific differences in elemental concentrations indicated that these sympatric seabirds are differently exposed to persistent contaminants circulating in the food web due to differences with respect to known feeding behaviours and prey preferences. Moreover, we found a consistent co-accumulative relationship between Se and Hg molar levels in liver tissues with mean Se:Hg molar ratio above 1. This relationship supports previous studies indicating that Se, via the formation of SeHg complexes, plays an essential biochemical role in the detoxification process of methyl mercury in seabirds. Our results suggest that feeding behaviour is an important factor associated to the interspecific differences of trace element concentrations in seabirds. However, traits other than feeding preferences (e.g. age) may also play an important role in the accumulation of these elements.
Afficher plus [+] Moins [-]Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China
2018
Zhang, Junwen | Ma, Teng | Yan, Yani | Xie, Xianjun | Abass, Olusegun K. | Liu, Congqiang | Zhao, Zhiqi | Wang, Zhizhen
High arsenic groundwater generally coexists with elevated Fe2+ concentrations (mg L−1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe2+ (i.e., μg L−1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh −221.7 to −31.9 mV) and arsenic concentration averages at 697 μg L−1. Acinetobacter (5.9–51.3%), Desulfosporosinus (4.6–30.2%), Brevundimonas (3.9–19%) and Pseudomonas (3.2–14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L−1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important insights into the mechanism controlling arsenic mobility under weakly alkaline and reducing conditions, and furnishes that arsenate reduction by bacteria play a major role leading to high accumulation of desorbed arsenite in groundwater.
Afficher plus [+] Moins [-]Impact of cold temperature on Euro 6 passenger car emissions
2018
Suarez-Bertoa, Ricardo | Astorga, Covadonga
Hydrocarbons, CO, NOx, NH₃, N₂O, CO₂ and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at −7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3–6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (−7 °C). High solid particle number (SPN) emissions (>1 × 10¹¹ # km⁻¹) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures.Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation.
Afficher plus [+] Moins [-]Maternal exposure to ambient air pollutant and risk of oral clefts in Wuhan, China
2018
Zhao, Jinzhu | Zhang, Bin | Yang, Shaoping | Mei, Hui | Qian, Zhengmin | Liang, Shengwen | Zhang, Yiming | Hu, Ke | Tan, Yafei | Xian, Hong | BeLue, Rhonda | Jordan, Savannah S. | Xu, Shunqing | Zheng, Tongzhang | Du, Yukai
Maternal exposure to ambient air pollution has been related to oral clefts in offspring; however, the epidemiologic evidence is equivocal. Especially, the association between high levels of exposure to ambient air pollution during pregnancy and oral clefts remains unclear. The objective of this study was to evaluate whether high levels of maternal exposure to PM2.5, PM10, O3, CO and SO2 are related to increased risk of oral clefts in Wuhan, China. A population-based study was conducted using cohort of 105,927 live-born infants, fetal deaths, and stillbirths during a two-year period from 2011 to 2013. For each participant, weekly and monthly averages of daily mean concentrations for each pollutant were estimated. Multiple logistic regression analyses were constructed to quantify the adjusted odds ratios (aORs) for the relationship between each air pollutant and oral clefts while controlling for key covariates. Using monthly averages, a cleft lip with or without cleft palate (CLP) was associated with PM2.5 (aORs 2nd month = 1.34, CI:1.19–1.49; aORs 3rd month=1.14, CI:1.02–1.28), PM10 (aORs 2nd month = 1.11, CI:1.00–1.23) and CO (aORs 2nd month = 1.31, CI:1.14–1.51; aORs 3rd month = 1.17, CI:1.03–1.33). A cleft palate only (CPO) was associated with PM2.5 (aORs 2nd month = 1.24, CI: 1.03–1.48), and O3 (aORs 2nd month = 1.21, CI: 1.03–1.42; aORs 3rd month = 1.18, CI: 1.02–1.37). Our findings reveal an association between air pollutants exposure and the risk of oral clefts. Future studies are needed to confirm these associations, and clarify the causality related to specific pollutants during the most relevant vulnerable exposure time windows for oral clefts during pregnancy.
Afficher plus [+] Moins [-]An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles
2018
Liu, Tong | Tian, Yingze | Xue, Qianqian | Wei, Chen | Qian, Yong | Feng, Yinchang
Source samples including crustal dust, cement dust, coal combustion were sampled and ambient samples of PM₂.₅ and PM₁₀ were synchronously collected in Hefei from April to December 2014. The size distributions of the markers in the measured source profiles were incorporated into ME-2 solution to develop a new method, called the SDABB model (an advanced ABB three-way factor analysis model incorporating size distribution information). The performance of this model was investigated using three-way synthetic and ambient dataset. For the synthetic tests, the size distributions of markers estimated by the SDABB model were more consistent with true condition. The AAEs between estimated and observed contributions of the SDABB ranged from 15.2% to 29.0% for PM₁₀ and 19.9%–31.6% for PM₂.₅, which is lower than those of PMF2. For the ambient PM, six source categories were identified by SDABB for both sizes, although the profiles were different. The source contributions were sulphate (33.33% and 24.53%), nitrate and SOC (22.33% and 18.16%), coal combustion (19.01% and 18.23%), vehicular exhaust (12.99% and 12.07%), crustal dust (10.69% and 19.40%) and cement dust (1.65% and 5.39%) for PM₂.₅ and PM₁₀ respectively. In addition, the estimated ratios of Al, Si, Ti and Fe in CRD were 0.76, 0.84, 1.10 and 0.85; those of Al and Si in CC were 0.42 and 0.66; Ca and Si in CD were 0.95 and 1.10; NO₃⁻ and NH₄⁺ in nitrate were 1.11 and 1.01; and SO₄²⁻ and NH₄⁺ in sulphate were 0.96 and 1.16. These modeled ratios were consistent with the measured ratios. The size distribution of contributions also came close to reality. Thus, the advanced SDABB three-way model can better capture the characteristics of sources between sizes by effectively incorporating the size distributions of the markers as physical constraints.
Afficher plus [+] Moins [-]A combined emission and receptor-based approach to modelling environmental noise in urban environments
2018
Oiamo, Tor H. | Davies, Hugh | Rainham, Daniel | Rinner, Claus | Drew, Kelly | Sabaliauskas, Kelly | Macfarlane, Ronald
The state of practice for noise assessment utilizes established standards for emission and propagation modelling of linear and point sources. Recently, land use regression (LUR) modelling has emerged as an alternative method due to relatively low data and computing resource demands. However, a limitation of LUR modelling is that is does not account for noise attenuation and reflections by features of the built environment. This study demonstrates and validates a method that combines the two modelling frameworks to exploit their respective strengths: Emission and propagation based prediction of traffic noise, the predominant source of noise at the level of streetscapes, and a LUR-based correction for noise sources that vary on spatial scales beyond the streetscape.Multi-criteria analysis, location-allocation modelling and stakeholder consultation identified 220 monitoring sites with optimal coverage for a 1-week sampling period. A subset of sites was used to validate a road traffic noise emission and propagation model and to specify a LUR model that predicted the contribution of other sources. The equivalent 24-h sound pressure level (LAeq) for all sites was 62.9 dBA (SD 6.4). This varied by time of day, weekday, types of roads and land uses. The traffic noise emission model demonstrated a high level of covariance with observed noise levels, with R² values of 0.58, 0.60 and 0.59 for daytime, nighttime and 24-h periods, respectively. Combined with LUR models to correct for other noise sources, the hybrid models R² values were 0.64, 0.71 and 0.67 for the respective time periods.The study showed that road traffic noise emissions account for most of the variability of total environmental noise in Toronto. The combined approach to predict fine resolution noise exposures with emission and receptor-based models presents an effective alternative to noise modelling approaches based on emission and propagation or LUR modelling.
Afficher plus [+] Moins [-]