Affiner votre recherche
Résultats 1031-1040 de 1,546
Adsorption of Phosphate from Aqueous Solution Using an Iron–Zirconium Binary Oxide Sorbent Texte intégral
2012
Ren, Zongmin | Shao, Lina | Zhang, Gaosheng
In this study, an iron–zirconium binary oxide with a molar ratio of 4:1 was synthesized by a simple coprecipitation process for removal of phosphate from water. The effects of contact time, initial concentration of phosphate solution, temperature, pH of solution, and ionic strength on the efficiency of phosphate removal were investigated. The adsorption data fitted well to the Langmuir model with the maximum P adsorption capacity estimated of 24.9 mg P/g at pH 8.5 and 33.4 mg P/g at pH 5.5. The phosphate adsorption was pH dependent, decreasing with an increase in pH value. The presence of Cl⁻, SO ₄ ²⁻ , and CO ₃ ²⁻ had little adverse effect on phosphate removal. A desorbability of approximately 53 % was observed with 0.5 M NaOH, indicating a relatively strong bonding between the adsorbed PO ₄ ³⁻ and the sorptive sites on the surface of the adsorbent. The phosphate uptake was mainly achieved through the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. Due to its relatively high adsorption capacity, high selectivity and low cost, this Fe–Zr binary oxide is a very promising candidate for the removal of phosphate ions from wastewater.
Afficher plus [+] Moins [-]Regional Contamination of Moravia (South-Eastern Czech Republic): Temporal Shift of Pb and Zn Loading in Fluvial Sediments Texte intégral
2012
Matys Grygar, Tomáš | Sedláček, Jan | Bábek, Ondřej | Nováková, Tereza | Strnad, Ladislav | Mihaljevič, Martin
Regional contamination by Pb and Zn in southern Moravia (south-east part of the Czech Republic) in the twentieth century was analysed in Brno Dam lake sediments and in floodplain sediments of the Morava River near Strážnice. The age model for the Brno Dam lake sediments has been obtained by 137Cs (maxima corresponding to the nuclear tests in atmosphere and the 1986 Chernobyl accident) and the construction of the dam (1940); the time constraints for the Morava River sediments was the erection of flood defences (1930s) and 210Pb dating. In the case of floodplain sediments, profiles exhibiting post-depositional mobilisation of heavy metals by pedogenic processes (gleying) must be excluded to reconstruct the history of contamination. There was a relatively fast joint onset of Pb and Zn load since the early stages of industrialisation in the first half of the twentieth century, but then the concentrations of these two metals developed in a different manner. Pb load only slightly increased till its peak in 1960s and 1970s. The increase of Zn load was rather stepwise: Soon before 1930s (Morava River floodplain) and in 1940s and 1950s (in Brno Lake), the relative contamination by Zn was much lower than during its peak in the 1970s to the present days. The offset of Pb and Zn contamination curves could have been caused by three different artificial sources of these heavy metals. The temporal shift of Pb and Zn loads can be used for dating sediments.
Afficher plus [+] Moins [-]Can a Single and Unique Cu Soil Quality Standard be Valid for Different Mediterranean Agricultural Soils under an Accumulator Crop? Texte intégral
2012
Recatalá, L. | Sacristán, D. | Arbelo, C. | Sánchez, J.
The validity of the soil quality standard for copper (Cu) established by the Spanish legislation (Spanish Royal Decree 9/2005) is evaluated in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L. var. Romaine cv. Long Green), considering both the effect of the metal on crop growth (biomass production) and its accumulation in the edible part of the plant. For saline soils, such a soil quality standard seems not to be valid taking into account both of the aspects evaluated. For non-saline soils, the soil quality standard also seems not to be valid since, considering the metal accumulation in the edible part of the plant, the soil quality standard should be above such standard; but considering the productivity function of soil (biomass production), the standard should be much below, meaning that this function is being greatly affected by the presence of high concentrations of Cu. The soil quality standard for each soil considered should correspond to a value between its respective EC50 and EC10 values (effective concentrations of added Cu causing 50% and 10% inhibition on the biomass production), depending on the politicians and/or farmers' compromise with yield production and, therefore, with soil productivity. These threshold values were greater for the soil having more organic matter and clay content, showing that Cu toxicity also depends on these properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards as highlighted by the European Thematic Strategy for Soil Protection.
Afficher plus [+] Moins [-]Removal of Rhodium (III) from Aqueous Solution by Na- and K-Treated Clinoptilolites Texte intégral
2012
Saltabaş, Ömer | Teker, Murat | Döver, Aslı | Atay, Eylem Serpil
The clinoptilolite which was modified with sodium and potassium chloride was found to have adsorption capacity for rhodium. To evaluate the adsorption capacity and characteristics, the effects of solution pH, dose of clinoptilolite loading, contact time, temperature, and initial rhodium concentration were investigated in a batch mode. Adsorption was decreased with the increasing temperature for both modified clinoptilolites. The Langmuir and Freundlich adsorption models were used for mathematical description of the adsorption equilibrium. Equilibrium data were fitted to the Langmuir model in the concentrations of 2–60 mg l−1 at 293 and 313 K. Based on the Langmuir isotherm plots, the maximum adsorption capacity value was calculated to be 0.415 mg g−1 at 293 K. Various thermodynamic parameters such as ∆G°, ∆H°, and ∆S° were evaluated with results indicating that this system was an exothermic spontaneous reaction and kinetically suited to the pseudo-second-order model.
Afficher plus [+] Moins [-]Reduction in the Acute Toxicity of Explosive Wastewater Containing Toxic Nitroaromatic Compounds by a Nanoscale Zerovalent Iron Pretreatment Process Texte intégral
2012
Liu, Guo-hua | Zhu, Shi-Ni | Ye, Zhengfang
The feasibility of using nanoscale zerovalent iron (nZVI) treatment for reducing the acute toxicity of explosive wastewater, such as 2,4,6-trinitrotoluene (TNT) red water which contains highly toxic nitroaromatic compounds (NACs), has been investigated. The water quality was evaluated before and after nZVI treatment using several different analytical techniques, including UV–Vis spectroscopy, X-ray photoelectron spectroscopy, high-performance liquid chromatography, and gas chromatography/mass spectroscopy. The acute toxicity of the wastewater was tested using a luminescence bacterium bioarray. The results indicated that the most significant toxic NACs, such as dinitrotoluene sulfonates, had been effectively removed from the TNT red water by nZVI together with the small amounts of other NACs. Following 1Â h of the nZVI processing treatment, the acute toxicity of the TNT wastewater was reduced by approximately 94Â %. This treatment would therefore be useful for the pretreatment of wastewaters prior to the application of a biological process. The reduction in the biotoxicity of the wastewater was based on the reductive conversion processes and adsorption behaviors of nZVI.
Afficher plus [+] Moins [-]Removal of Fluoride from Water by Adsorption onto Lanthanum Oxide Texte intégral
2012
Rao, C. R Nagendra | Karthikeyan, Janakiraman
Rare earth mineral based adsorbent viz. lanthanum oxide was investigated for potential application in defluoridation of drinking water for isolated and rural communities. Results of batch experiments indicated about 90% removal in 30 min from a 4 mg L−1 synthetic fluoride solution. The effects of various parameters like contact time, pH, initial concentration, and sorbent dose on sorption efficiency were investigated. Adsorption efficiency was dependent on initial fluoride concentration and the sorption process followed BET model. Variation of pH up to 9.5 has insignificant effect on sorption and beyond a pH of 9.5, the effect was drastic. Among anions investigated, carbonates exhibited high detrimental effect on fluoride adsorption while anions like bicarbonates, chlorides, and sulfates did not seriously affect the process. Adsorbent showed negligible desorption of fluoride in distilled water. Alum was more effective regenerant than HCl and NaOH. Results of cyclic regeneration with alum indicated that the sorbent could be regenerated for ten cycles without significant loss of sorption capacity. Studies with upflow fixed-bed continuous flow columns indicated the usefulness of sorbent for fluoride removal in continuous flow process.
Afficher plus [+] Moins [-]Surface Modification of Sporopollenin with Calixarene Derivative : Characterization and Application for Metal Removal Texte intégral
2012
Gubbuk, Ilkay Hilal | Gürfidan, Leyla | Erdemir, Serkan | Yılmaz, Mustafa
In this study, p-tert-butylcalix[4]-aza-crown (CAC) immobilized sporopollenin (Sp) was used as a sorbent for the removal of Cu(II), Pb(II) and Zn(II) from aqueous media. Sporopollenin was firstly functionalized with 3-chloropropyltrimethoxysilane (CPTS) in order to obtain chloro-sporopollenin (Sp-Cl). The Sp-Cl was reacted subsequently with CAC yielding CAC-bonded sporopollenin (Sp-Cl-CAC). The new sorbent was characterized by infrared spectroscopy (FTIR), thermal analysis (TG/DTG) and scanning electron microscopy (SEM). The sorption properties of modified sorbent (Sp-Cl-CAC) are also investigated. The optimum pH values for the separation of metal ions from aqueous solution onto Sp-Cl-CAC were 5.0 for Pb(II) and Cu(II) and 5.5 for Zn(II). The maximum sorption capacities for Cu(II), Pb(II) and Zn(II) were 0.07 (4.44 mg g), 0.07 (4.58 mg g) and 0.14 (29.00 mg g) mmol g, respectively. Sorption thermodynamic parameters of such as free energy ( ∆G), enthalpy ( ∆H), and entropy ( ∆S) were evaluated.
Afficher plus [+] Moins [-]Atmospheric Deposition of Nitrogen to a Caribbean Coastal Zone (Cayo Coco, Cuba): Temporal Trends and Relative Importance as a Nitrogen Source Texte intégral
2012
Nitrogen (N) deposition to the ocean is thought to be increasing worldwide, but the amount of coastal and open ocean measurements is very limited. In this paper, we assess N deposition in the coastal zone of Cayo Coco, in central Cuba, during a multi-annual period (2005–2007). Wet and dry N depositions were estimated based on the NH 4 + and NO x – concentrations in the rain. Cold fronts and troughs, coming from the west, contributed most to rain (41%) and to N deposition, followed by tropical waves and storms coming from the east, which caused 31% of the rain. Average concentrations of NH 4 + and NO x – in the rain were 8.8 and 8.3Â μM. NO x – presented a clearly decreasing trend (0.26Â μM per month), decreasing by half during 2005–2007. Total N deposition averaged 3.23Â kg N ha−1Â year−1, similar to that found in Virgin Islands and Puerto Rico, but lower than previously measured in Cuba and in nearby areas of the USA and than model predictions for the oceanic region around Cuba. These low values and the decreasing trend found are attributed to drastic reduction of fossil fuel and fertilizer use in Cuba since 1990. Because land input has decreased even more drastically, deposition seems to be nowadays the most important N source to the coastal zone of Cayo Coco. The δ15N range of seagrass (Thalassia testudinum) and macroalgae (Penicillus dumetosus) in the area (−1.83â° to 3.02â° and +1.02â° to +4.17â°, respectively) sustain that atmospheric sources (deposition and N2 fixation) comprise 70–90% of the N budget.
Afficher plus [+] Moins [-]Comparison of Surface-Modified Adsorbents for Phosphate Removal in Water Texte intégral
2012
Choi, Jae-Woo | Lee, Seung-yeon | Yi, Sang-hyŏp | Kim, Ji Eun | Park, Ki-Young | Kim, Dong-Ju | Hong, Seok-Won
Three novel composite adsorbents, sulfate-coated zeolite (SCZ), hydrotalcite (SCH), and activated alumina (SCAA), were characterized and employed for the removal of phosphate from aqueous solution using equilibrium and kinetic batch experiments. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectrum were used to study the surface characteristics of the coated layer. Equilibrium tests showed that the adsorption of phosphate followed both Langmuir and Freundlich isotherms. The powder-type SCZ was better for phosphate removal (maximum binding energy, β = 111.49 mg g−1) compared to hydrotalcite and activated alumina. The adsorption of phosphate was considered to take place mainly by ion exchange. The kinetic data followed a pseudo-second-order kinetic model. The initial adsorption of phosphate onto the sulfate-coated adsorbents was fast, indicating that the sulfate-coated materials developed in this study can be used as promising adsorbents for the removal of phosphate from wastewater or sewage.
Afficher plus [+] Moins [-]Sorption of 17α-Methyltestosterone onto Soils and Sediment Texte intégral
2012
Ong, Say Kee | Chotisukarn, Pawittra | Limpiyakorn, Tawan
In aquafarming, 17α-methyltestosterone (MT) is widely used as an anabolic steroid to induce the sex of Nile tilapia fry to male in order to increase production yield. Nile tilapia fry is fed at a rate of 0.06Â mg of MT/kg of feed during the first 21Â days after hatching. MT not consumed by the fish fry may be sorbed onto the sediment in the fish ponds which may contaminate the environment when released from the ponds. Using soils and sediment from a Nile tilapia masculinization pond as sorbents in batch sorption experiments, the linear sorption coefficients (K d) of MT were found to range from 1.2 to 168.8Â L/kg with an average K âc value of 9,450Â L/kg. The linear sorption coefficients of MT were found to correlate with the organic carbon contents of the sorbents. Sorption of MT onto sand, garden soil, and sediment was not impacted by pH, but the sorption of MT onto sediment was found to be impacted by the salinity of the water. The salting out coefficient of MT in saline water was found to be approximately 0.87Â L/mol.
Afficher plus [+] Moins [-]