Affiner votre recherche
Résultats 1051-1060 de 7,921
Effects of soil type, moisture content and organic amendment rate on dimethyl disulfide distribution and persistency in soil
2021
Wang, Xianli | Zhang, Yi | Cao, Aocheng | Xu, Jin | Fang, Wensheng | Yan, Dongdong | Li, Yuan | Wang, Qiuxia
Understanding the distribution and persistence of the fumigant dimethyl disulfide (DMDS) under different soil conditions would contribute to a more environmentally sustainable use of this gas. We determined the effects of soil type, soil moisture content and soil organic amendment rate on DMDS distribution and persistency using soil columns in the laboratory. The peak concentrations of DMDS at 60 cm soil depth in sandy loam soil, black soil and red loam soil were 1.9 μg cm⁻³, 0.77 μg cm⁻³, 0.22 μg cm⁻³, respectively. The total soil residues of DMDS in sandy loam soil, black soil and red loam soil were 0.4, 1.3 and 1.3%, respectively. The peak concentrations of DMDS at 60 cm soil depth and the total soil residues of DMDS applied decreased from 3.2 μg cm⁻³ to 0.9 μg cm⁻³ and 3.3 to 0.5% when soil moisture content increased from 6 to 18%, respectively. Incremental increases (0–5%) in organic amendment rates decreased DMDS distribution through the soils and increased soil residues. Wait periods were required of 7, 21 and 21 days after polyethylene (PE) film was removed to reduce residues sufficiently for cucumber seed germination in sandy loam soil, black soil and red loam soil with 12% moisture content and 0% organic amendment rate, respectively. However, no wait period was required for successful cucumber seed germination in sandy loam soils (Beijing) with 6, 12 or 18% moisture content or organic amendment rates of 1 or 5%, respectively, but in commercial practice 7 days delay would be prudent. Our results indicated that soil type, soil moisture content and organic amendment rates significantly affected DMDS distribution, persistency and residues in soil. Those factors should be taken into consideration by farmers when determining the appropriate dose of DMDS that will control soil pests and diseases in commercially-produced crops.
Afficher plus [+] Moins [-]Characteristics of bacterial community structure and function associated with nutrients and heavy metals in coastal aquaculture area
2021
Wang, Caixia | Wang, Yibo | Liu, Pengyuan | Sun, Yanyu | Song, Zenglei | Hu, Xiaoke
Coastal aquaculture area has become one of the critical zones that are more susceptible to the influence of human activity. Many aquaculture operations invariably result in the accumulation of nutrients and heavy metals in the coastal ecosystem. Our study investigated sediment bacterial community structure and function across 23 sites under the influence of nutrients and heavy metals in the coastal aquaculture area. The habitat environment of the sediment was described by analyzing physicochemical characteristics. Sediment bacterial community structure and diversity were investigated by 16S rRNA sequencing. The sequencing data presented that Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria and Chloroflexi were predominant at phylum level. Variations in the bacterial community composition and diversity were significant (P < 0.01) among different groups (according to the distance from the bank side) which indicated that specific environmental conditions had shaped distinct bacterial community. Specifically, bacterial diversity and composition were significantly influenced by the temperature, salinity, pH, dissolved oxygen (DO), TOC, TON, nitrite, nitrate and heavy metals (P < 0.05). Results related to functional prediction demonstrated that carbon, nitrogen and sulfur metabolism were the dominant processes in the coastal aquaculture area. In the meantime, the potential pathogens such as Arcobacter was found in site S3, which indicated the possible threat to the cultured species in this area. Overall, variations in bacterial communities caused by nutrients and heavy metals can affect biogeochemical cycles, which may provide an indication for the protection of coastal aquaculture environments.
Afficher plus [+] Moins [-]Grafting resulting in alleviating tomato plant oxidative damage caused by high levels of ofloxacin
2021
Zhang, Zhihuan | Liu, Xuena | Lv, Yao | Li, Na | Xu, Kun
Antibiotic pollution has become a global problem threatening human health. Ofloxacin is one of the more widely used antibiotics, but reports on the reaction of plant to ofloxacin pollution are limited. In this study, using adversity-resistant (R), adversity-sensitive (S) and grafted plant S/R as models, we investigated the biological response of tomato to exogenous ofloxacin residues. The results showed that lower levels of ofloxacin treatment (5 mg L⁻¹ and 10 mg L⁻¹) promoted tomato growth, and 10 mg L⁻¹ ofloxacin was the critical dose to stimulate growth among the different treatments. In addition, the photosynthetic and fluorescence parameters, antioxidant enzyme activities and transcription-level expression of the enzymes were stimulated by low ofloxacin treatment. However, high ofloxacin treatment (20 mg L⁻¹ and 40 mg L⁻¹) exhibited a significantly negative effect on plant growth, photosynthesis, fluorescence parameters, antioxidant enzyme activities and transcript levels expression. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels increased with increasing ofloxacin concentrations, indicating that the oxidative damage of plants was severe with increasing doses. In contrast, the role of antioxidant enzymes in the antibiotic response was limited at high ofloxacin concentrations. The grafting experiment demonstrated that grafted plants had the ability to alleviate ofloxacin stress. In conclusion, ofloxacin can damage the photosynthetic machinery by promoting ROS accumulation, which results in the etiolation of tomato leaves and inhibits plant growth, but grafting can reduce its.
Afficher plus [+] Moins [-]A simple technique to mitigate microplastic pollution and its mobility (via ballast water) in the global ocean
2021
Naik, Ravidas Krishna | Chakraborty, Parthasarathi | D’Costa, Priya M. | N, Anilkumar | Mishra, R.K. | Fernandes, Veliton
Ballast water transport is considered as one of the major vectors for dispersal of microplastics around the global oceans. In this commentary, a simple, inexpensive solution has been proposed to reduce microplastic pollution and its mobility via ballast water. A screening chamber (with stainless steel three layered mesh) is proposed to be attached to the existing Ballast Water Treatment Systems (BWTSs) in cargo ships to filter back-flushed sea water from BWTSs. The three layered screens (500, 300 and 100 μm) will not only avoid clogging and easy separation of different size groups of microplastic particles but also help in smooth discharge of water to the sea. This technique is expected to remove a large number of microplastic particles (ranging from 0.0015 to 1020 million) from a single voyage. The proposed chamber may help to collect 0.0003–204 metric tons of particles/day, depending upon the geographical location of ballast intake in the global ocean. These estimations were made by considering a daily turnover of 0.033 billion tonnes of ballast water globally. This proposed screening chamber attached to the existing BWTSs in cargo ships, along with other region-specific ocean cleaning initiatives, will help in mitigating microplastic pollution in the global ocean.
Afficher plus [+] Moins [-]Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19?
2021
Chen, Bo | Han, Jie | Dai, Han | Jia, Puqi
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Afficher plus [+] Moins [-]Pollution characteristics and ecological risks associated with heavy metals in the Fuyang river system in North China
2021
Zhao, Jiating | Wu, Erwei | Zhang, Bowen | Bai, Xu | Lei, Pei | Qiao, Xiuwen | Li, Yu-Feng | Li, Bai | Wu, Gang | Gao, Yuxi
The Fuyang River system (FRS) in north China, for a long time, is seriously polluted with organic compounds and heavy metals due to industrialization. However, the information on heavy metal pollution in this area is still limited, and health risks raised by trace elements are neglected up to now. To characterize the heavy metal pollutants and assess their potential ecological risks scientifically in FRS, surface sediments were collected from 66 sampling sites selected according to the hydrological and anthropogenic conditions along the river. A total of twelve metal pollutants (e.g., Cr, As, and Hg) in the sediments were detected among the distributaries. A combining application of geoaccumulation index (Igₑₒ), ratio of secondary phase and primary phase (RSP), and the ecological risk factor (Erⁱ) in this study gave systematic assessment results of single or combined pollution status raised by heavy metals in this area. The results show that Cr, Ni, Cu, As, Cd, Co, and Sn are mainly dispersed in the river reaches of Xingtai City and pose potential health risks in midstream, as per the geoaccumulation index and Pearson’s correlation analyses. In particular, Cd accumulates strongly in sediments of Ming River and Aixinzhuang dam from Xingtai City. In upstream and downstream of FRS, the potential ecological risk is low, except in Yongnian County where high ecological risk was caused by Cd and Hg. These findings provide new insights into the pollution characteristics and assessment of the potential ecological risks induced by heavy metals along FRS, which suggest new directions should strategically tend to typical pollutants control by policy formulation and taking effective measures to prevent and manage heavy metal pollution in North China.
Afficher plus [+] Moins [-]Sulfadiazine dissipation as a function of soil bacterial diversity
2021
de Souza, Adijailton Jose | Pereira, Arthur Prudêncio de Araújo | Andreote, Fernando Dini | Tornisielo, Valdemar Luiz | Tizioto, Polyana Cristiane | Coutinho, Luiz Lehmann | Regitano, Jussara Borges
Antibiotic residues in the environment are concerning since results in dispersion of resistance genes. Their degradation is often closely related to microbial metabolism. However, the impacts of soil bacterial community on sulfadiazine (SDZ) dissipation remains unclear, mainly in tropical soils. Our main goals were to evaluate effects of long-term swine manure application on soil bacterial structure as well as effects of soil microbial diversity depletion on SDZ dissipation, using “extinction dilution approach” and ¹⁴C-SDZ. Manure application affected several soil attributes, such as pH, organic carbon (OC), and macronutrient contents as well as bacterial community structure and diversity. Even minor bacterial diversity depletion impacted SDZ mineralization and non-extractible residue (NER) formation rates, but NER recovered along 42 d likely due to soil diversity recovery. However, this period may be enough to spread resistance genes into the environment. Surprisingly, the non-manured natural soil (NS–S1) showed faster SDZ dissipation rate (DT₉₀ = 2.0 versus 21 d) and had a great number of bacterial families involved in major SDZ dissipation pathways (mineralization and mainly NER), such as Isosphaeraceae, Ktedonobacteraceae, Acidobacteriaceae_(Subgroup_1), Micromonosporaceae, and Sphingobacteriaceae. This result is unique and contrasts our hypothesis that long-term manured soils would present adaptive advantages and, consequently, have higher SDZ dissipation rates. The literature suggests instantaneous chemical degradation of SDZ in acidic soils responsible to the fast formation of NER. Our results show that if chemical degradation happens, it is soon followed by microbial metabolism (biodegradation) performed by a pool of bacteria and the newly formed metabolites should favors NER formation since SDZ presented low sorption. It also showed that SDZ mineralization is a low redundancy function.
Afficher plus [+] Moins [-]Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota
2021
Akbar, Siddiq | Huang, Jing | Zhou, Qiming | Gu, Lei | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The gut microbiota has been increasingly recognized to regulate host fitness, which in turn is dependent on stability of community structure and composition. Many biotic and abiotic factors have been demonstrated to shape gut microbiota of cladocerans. However, the interactive effects of these variables on cladocerans fitness due to alteration of gut microbiota and their linkage with life history parameters are poorly understood. Here, we investigated the responses of Daphnia magna gut microbiota to the combined effects of toxic Microcystis aeruginosa and high temperature and its associations with fitness. We found that under good food regime, the temperature has no effect on the composition of the gut microbiota, whereas under high proportion of toxic M. aeruginosa and high temperature conditions, D. magna lost their symbionts. High proportion of toxic M. aeruginosa and high temperature had synergistically negative effects on D. magna performance due to altered gut microbiota. The high abundance of symbiotic Comamonadaceae and good food increased D. magna fitness. The present study illustrates that understanding life history strategies in response to multiple stressors related to changes in the gut microbiota diversity and composition requires integrated approaches that incorporate multiple linked traits and tether them to one another.
Afficher plus [+] Moins [-]Systematic identification of microplastics in abyssal and hadal sediments of the Kuril Kamchatka trench
2021
Abel, Serena M. | Primpke, Sebastian | Int-Veen, Ivo | Brandt, Angelika | Gerdts, Gunnar
The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the “trash bins of the oceans” and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143–8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg⁻¹ sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.
Afficher plus [+] Moins [-]Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships
2021
Sigurnjak Bureš, M. | Ukić, Š | Cvetnić, M. | Prevarić, V. | Markić, M. | Rogošić, M. | Kušić, H. | Bolanča, T.
Pollutants in real aquatic systems commonly occur as chemical mixtures. Yet, the corresponding risk assessment is still mostly based on information on single-pollutant toxicity, accepting the assumption that pollutant mixtures exhibit additive toxicity effect which is often not the case. Therefore, it is still better to use the experimental approach. Unfortunately, experimental determination of toxicity for each mixture is practically unfeasible. In this study, quantitative structure-activity relationship (QSAR) models for the prediction of toxicity of binary mixtures towards bioluminescent bacteria Vibrio fischeri were developed at three toxicity levels (EC₁₀, EC₃₀ and EC₅₀). For model development, experimentally determined toxicity values of 14 pollutants (pharmaceuticals and pesticides) were correlated with their structural features, applying multiple linear regression together with genetic algorithm. Statistical analysis, internal validation and external validation of the models were carried out. The toxicity is accurately predicted by all three models. EC₃₀ and EC₅₀ values are mostly influenced by geometrical distances between nitrogen and sulfur atoms. Furthermore, the simultaneous presence of oxygen and chlorine atoms in mixture can induce the increase in toxicity. At lower effect levels (EC₁₀), nitrogen atom bonded to different groups has the highest impact on mixture toxicity. Thus, the analysis of the descriptors involved in the developed models can give insight into toxic mechanisms of the binary systems.
Afficher plus [+] Moins [-]