Affiner votre recherche
Résultats 1061-1070 de 7,921
Amino, nitro, chloro, hydroxyl and methyl substitutions may inhibit the binding of PAHs with DNA
2021
Qin, Chao | Hu, Xiaojie | Yang, Bing | Liu, Juan | Gao, Yanzheng
The binding of PAHs with DNA to form PAH-DNA adducts is a crucial step in PAH-induced carcinogenesis. How functional groups affect this binding is largely unknown. Here, we observed that functional group substitutions strongly inhibited PAH-DNA binding. Additionally, –OH substitution has the most potent inhibitory effect as it causes the smallest change in the electrostatic surface potential. Fourier transform infrared spectroscopy and molecular docking analyses demonstrated that PAH derivatives bind with guanine via intercalation and groove binding and then non-specifically insert into the major/minor grooves of DNA. Quantum chemical calculations suggested that hydrogen/halogen bonding may be essential in affecting the binding of functional group-substituted PAHs with DNA. It was further revealed that Log KOA and the PAH derivatives’ melting points correlated significantly with binding affinity, implying that changes in the physicochemical characteristics are important factors. This study opens a new window for understanding the relationship between highly toxic PAH derivatives and genetic materials.
Afficher plus [+] Moins [-]Purification, characterization, and catalytic mechanism of N-Isopropylammelide isopropylaminohydrolase (AtzC) involved in the degradation of s-triazine herbicides
2021
Zhou, Nan | Wang, Jie | Wang, Wenbo | Wu, Xiangwei
Deamination is ubiquitous in nature and has important biological significance. Leucobacter triazinivorans JW-1, recently isolated from sludge, can rapidly degrade s-triazine herbicides. The responsible enzymes, however, have not been purified and characterized.Herein, we purified an amidohydrolase, i.e., N-isopropylammelide isopropylaminohydrolase (AtzC) from JW-1 cells by ammonium sulfate precipitation and three chromatography steps. The purified AtzC catalyzed amidohydrolysis of N-isopropylammelide to cyanuric acid. The optimal catalytic conditions of the purified AtzC were 42 °C and pH 7.0, and the Kₘ and Vₘₐₓ of AtzC was 0.811 mM and 28.19 mmol/min·mg. AtzC could catalyze amidohydrolysis of an N-alkyl substituent from dihydroxy s-triazines to cyanuric acid. Molecular docking and structural alignments were used to infer AtzC catalytic mechanism. The structural architecture of AtzC resembled that of cytosine deaminase in class III amidohydrolase, with a single Zn²⁺ coordinated by His and Asp. Interestingly, the AtzC lacks an acidic residue putatively to activate water for hydrolysis as compared to the other amidohydrolases. His253 in AtzC probably functions as a single general acid-base catalyst. These findings further enhance our understanding how aminohydrolases catalyze the metabolism of s-triazine herbicides.
Afficher plus [+] Moins [-]Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong
2021
Hossain, Md Shakhaoat | Frey, H Christopher | Louie, Peter K.K. | Lau, Alexis K.H.
The reduction of NOₓ emissions in a VOC-limited region can lead to an increase of the local O₃ concentration. An evaluation of the net health effects of such pollutant changes is therefore important to ascertain whether the emission control measures effectively improve the overall protection of public health. In this study, we use a short-term health risk (added health risk or AR) model developed for the multi-pollutant air quality health index (AQHI) in Hong Kong to examine the overall health impacts of these pollutant changes. We first investigate AR changes associated with NO₂ and O₃ changes, followed by those associated with changes in all four AQHI pollutants (NO₂, O₃, SO₂, and particulate matter (PM)). Our results show that for the combined health effects of NO₂ and O₃ changes, there is a significant reduction in AR in urban areas with dense traffic, but no statistically significant changes in other less urbanized areas. The increase in estimated AR for higher O₃ concentrations is offset by a decrease in the estimated AR for lower NO₂ concentrations. In areas with dense traffic, the reduction in AR as a result of decreased NO₂ is substantially larger than the increase in AR associated with increased O₃. When additionally accounting for the change in ambient SO₂ and PM, we found a statistically significant reduction in total AR everywhere in Hong Kong. Our results show that the emission control measures resulting in NO₂, SO₂, and PM reductions over the past decade have effectively reduced the AR over Hong Kong, even though these control measures may have partially contributed to an increase in O₃ concentrations. Hence, efforts to reduce NOx, SO₂, and PM should be continued.
Afficher plus [+] Moins [-]Online measurement of 1,2,4-trichlorobenzene as dioxin indicator on multi-walled carbon nanotubes
2021
Mubeen, Ishrat | Tulaphol, Sattrawut | Shengyong, Lu | Pan, Denggao | Zhang, Pengfei | K̲h̲ān, Muḥammad Sājid | Yan, Mi | Stevens, William R.
Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) emission is one of main concerns for the secondary pollution of municipal solid waste incinerators (MSWI). For timely response to emission, 1,2,4-trichlorobenzene (1,2,4-TrClBz) as dioxin indicator can be monitored via online measurement techniques. In this study, multi-walled carbon nanotubes (MWCNTs) were investigated for their suitability as a 1,2,4-TrClBz sorbent for MSWI stack gas analysis. The tests include, batch adsorption, continuous adsorption-desorption of 1,2,4-TrClBz via thermal desorption coupled with gas chromatography (TD-GC-ECD), temperature and concentration stability of MWCNTs, and adsorption performance of the system. Thermogravimetric/derivative thermogravimetric (TGA/DTG) analysis reveals that MWCNTs has higher capacity in terms of weight loss (14.34%) to adsorb 1,2,4-TrClBz compared to Tenax TA (9.46%) and also shows fast desorption of adsorbate at temperature of 87 °C compared to Tenax TA (130 °C). Interestingly, carbon nanotubes and Tenax TA gave almost similar adsorption-desorption response, and from TD-GC-ECD analysis it was found that with increasing mass flow of 1,2,4-TrClBz (7.42 × 10⁻⁶ - 44.52 × 10⁻⁶ mg ml⁻¹) through sorbent traps, average peak areas increased from 2.86 ± 0.02 to 13.54 ± 0.26 for MWCNTs and 2.89 ± 0.02 to 13.38 ± 0.12 for Tenax TA, respectively. The stability of MWCNTs for temperature was 400 °C and for concentration of 1,2,4-TrClBz was 50 ppbv. However, regeneration of sorbent at 100 ppbv (1,2,4-TrClBz) was not possible. TD-GC-ECD system showed high adsorption performance with 3.86% and 3.59% relative standard deviation at 250 °C and 300 °C, respectively. Further Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed that adsorbate can be fully desorbed at 300 °C.
Afficher plus [+] Moins [-]Contrasting microcystin-LR sorption and desorption capability of different farmland soils amended with biochar: Effects of biochar dose and aging time
2021
Yuan, Yue | Li, Jieming | Wang, Chengyu | An, Guangqi
This study explored biochar (BC) amendment effects on microcystin-LR (MCLR) concentration-dependent sorption and sequential desorption (SDE) by diverse soils to assess MCLR-trapping by BC-amended soils. Soil properties varied with rising BC dose and aging time. As aging proceeded, BC-amended soils shared a generally similar ‘firstly increase and then decrease’ trend of MCLR sorption and ‘firstly decrease and then increase’ trend of desorption at most cases. It appeared that MCLR sorption by BC-amended soils was most positively correlated with mesoporosity and surface basic functionality. BC-amendment increased MCLR-trapping for most soils, especially 4% BC at 3 month-aging maximized trapping ratio of GZ, SY and SX to 86.59%–95.43%, 80.01%–87.20% and 78.73%–90.85%, respectively, at 50–500 μg/L MCLR by largely increasing sorption and decreasing desorption. BC-amendment best matched GZ soil because MCLR-trapping of BC-amended GZ exceeded other amended soils at the same BC dose and aging time, but failed to obviously increase MCLR-trapping of HS soil at most cases, except only case with 2% BC at 3 month-aging. Site energy distribution verified that maximally enhanced MCLR-trapping of most soils was due to greatly enhanced sorption affinity during sorption and 1st desorption cycle, making closer MCLR-binding that more resistant to desorption. Contrarily, BC-amendment did not enhance sorption affinity of HS along sorption-SDE to compromise MCLR-trapping increase at most cases. This study validated 3 months as suitable BC-aging time to maximize MCLR-trapping in diverse soils, and elucidated influencing factors and mechanisms from view of site energy distribution, which shed novel insights on MCLR sorption-desorption by BC-amended soils, and guided to optimize BC-amendment strategy for efficient MCLR-immobilization and eco-risk elimination in diverse soils.
Afficher plus [+] Moins [-]Occurrence and distribution of PAHs and microbial communities in nearshore sediments of the Knysna Estuary, South Africa
2021
Liu, Xinran | Liu, Min | Zhou, Limin | Hou, Lijun | Yang, Yi | Wu, Dianming | Meadows, Michael E. | Li, Zhanhai | Tong, Chunfu | Gu, Jinghua
This study investigated the polycyclic aromatic hydrocarbons (PAHs) occurrence, and their impact on the microbial community and PAH-degrading genera and genes in the Knysna Estuary of South Africa. The results reveal that the estuary exhibits low PAH levels (114.1–356.0 ng g⁻¹). Ignavibacteriae and Deferribacteres, as well as Proteobacteria and Bacteroidetes, are keystone phyla. Among measured environmental factors, total organic carbon (TOC), nutrients such as nitrite and nitrate, metals as Al, Cr, Cu, Ni, Pb and Zn, and environmental properties (pH and salinity) are primary contributors to structuring the bacterial community assemblage. The abundance of alpha subunit genes of the PAH-ring hydroxylating dioxygenases (PAH-RHDα) of Gram-negative bacteria lies in the range of (2.0–4.2) × 10⁵ copies g⁻¹, while that of Gram-positive bacteria ranges from 3.0 × 10⁵ to 1.3 × 10⁷ copies g⁻¹. The PAH-degrading bacteria account for up to 0.1% of the bacterial community and respond mainly to nitrate, TOC and salinity, while PAHs at low concentration are not significant influencing factors. PAH degraders such as Xanthomonadales, Pseudomonas, and Mycobacterium, which play a central role in PAH-metabolization coupled with other biogeochemical processes (e.g. iron cycling), may contribute to maintaining a healthy estuarine ecosystem. These results are important for developing appropriate utilization and protection strategies for pristine estuaries worldwide.
Afficher plus [+] Moins [-]Polybrominated diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell lines
2021
Rajput, Imran Rashid | Yaqoob, Summra | Yajing, Sun | Sanganyado, Edmond | Wenhua, Liu
Cetaceans accumulate persistent and toxic substances such as polybrominated diphenyl ethers in their tissue. PBDEs are ubiquitous in marine environments, and their exposure to mammals is linked to numerous health effects such as endocrine disruption, neurotoxicity, carcinogenicity, and fetal toxicity. However, the toxicological effects and mechanism of toxicity in cetaceans remains poorly understood. The effects of BDE-47 (0.1–0.5 μg mL⁻¹), BDE-100 (0.1–0.5 μg mL⁻¹), and BDE-209 (0.25–1.0 μg mL⁻¹) exposure on cell viability, oxidative stress, mitochondrial structure, and apoptosis were evaluated using a recently established pantropical spotted dolphin (Stenella attenuata) skin fibroblast cell line (PSD-LWHT) as an in vitro model. However, the production of reactive oxygen species (ROS) increased following exposure to 1.0 μg mL⁻¹ PBDE while superoxide anion, hydroxyl radicals, and inducible nitric oxide increased in a dose-dependent manner. At 0.5–1.0 μg mL⁻¹, PBDEs significantly reduced the mitochondrial membrane potential. In addition, exposure to BDE-47 and -209 significantly affected mitochondrial structure as well as cell signaling and transduction compared to BDE-100. Although PBDE exposure did not affect cell viability, a significant increase in cell apoptosis markers (Bcl2 and caspase-9) was observed. This study demonstrated that BDE-47, -100, and −209 congeners might cause cytotoxic and genotoxic effects as they play a crucial role in the dysregulation of oxidative stress and alteration of mitochondrial and cell membrane structure and activity in the fibroblast cells. Hence, these results suggest that PBDEs might have adverse health effects on cetaceans inhabiting contaminated marine environments.
Afficher plus [+] Moins [-]Mercury bioaccumulation pathways in tusk (Brosme brosme) from Sognefjord, Norway: Insights from C and N isotopes
2021
Azad, A.M. | Frantzen, S. | Bank, M.S. | Madsen, L. | Maage, A.
Seafood is the main source of methylmercury (MeHg) exposure for humans and elevated total mercury (Hg) concentrations have been reported in marine fish from Norwegian fjords compared with offshore areas. Hg in tusk fillets (n = 201) and liver samples (n = 177) were measured in individuals from different habitats including offshore, coastal area, outer and inner Sognefjord. Specifically, the effects of habitat, energy sources and trophic complexity on Hg bioaccumulation pathways in tusk (Brosme brosme) were investigated using stable isotopes of carbon (δ¹³C) and nitrogen (δ¹⁵N). The concentrations of Hg in tusk increased from offshore towards inner Sognefjord. While Hg concentrations in sediment were at background levels, tusk fillet samples from 7 of 8 sites in Sognefjord had higher Hg levels than the maximum level set by European Union. Based on these findings, human consumption advice for tusk from Sognefjord was issued by the Norwegian Food Safety Authority. δ¹³C values in tusk successfully discriminated individuals from different habitats and were positively correlated to Hg concentrations in tusk across individuals, sites and habitats, outlining the potential importance of terrestrial carbon and most likely the atmospheric deposition of Hg from the catchment to the overall Hg bioaccumulation and exposure regime in tusk. Additionally, we postulate that the effects of terrestrial carbon sources increased towards inner Sognefjord and likely influenced Hg bioavailability throughout the food web. In contrast, δ¹⁵N values were patchy throughout the fjord system and although trophic position explained some of the Hg variation between individual fish, it was not correlated with Hg variation across sites and habitats. Our results suggest that tusk can accumulate high levels of Hg in fjord ecosystems and that catchment runoff is likely an important driver of Hg bioaccumulation in this species.
Afficher plus [+] Moins [-]Effect of ultrasonic pretreatment on chain elongation of saccharified residue from food waste by anaerobic fermentation
2021
Ma, Hongzhi | Lin, Yujia | Jin, Yong | Gao, Ming | Li, Hongai | Wang, Qunhui | Ge, Shengbo | Cai, Liping | Huang, Zhenhua | Van Le, Quyet | Xia, Changlei
Converting biowaste into value-added products has raised the researchers’ interests. In this study, bioconversion was applied to produce chain acids from food waste by anaerobic fermentation. To improve the caproic acid production, different pretreatments (i.e., ultrasonic, hydrothermal, and alkaline-thermal) were used for investigating their effects on the acidogenic production and microbial communities. The results showed that ultrasonic and hydrothermal pretreatments (207.8 and 210.1 mg COD/g VS, respectively) were very efficient for enhancing the caproic acid production, compared to the alkaline-thermal pretreated samples and control samples (72.6 and 97.5 mg COD/g VS, respectively). The ultrasonic pretreatment was beneficial for reducing volatile fatty acids (VFAs) during the caproic acid production, resulting in converting more lactic acid to caproic acid by adding the hydrothermal pretreatment. The microbial community analysis showed that the acidogenic bacteria Caproiciproducens dominated the fermentation in this bioconversion process of food waste into chain acids. The Caproiciproducens mainly degraded the proteins and carbohydrates from the saccharified residues of food waste to produce caproic acids through chain elongation procedure. The investigation and optimized method may help develop the bioconversion technology for producing VFAs products from food wastes.
Afficher plus [+] Moins [-]Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017
2021
Wang, Kun | Tong, Yali | Yue, Tao | Gao, Jiajia | Wang, Chenlong | Zuo, Penglai | Liu, Jieyu
From 2015 to 2017, China took strong air pollution control measures (APCMs) for coal-fired industrial boilers (CFIBs), including eliminating CFIBs, promoting clean fuels, and updating air pollution control devices (APCDs). Based on the industrial boiler’s emission inventory of air pollutants, measure-specific emission reductions from 2015 to 2017 was estimated in this study. Besides, the measure-specific environmental benefits of unit emission reduction on concentration and deposition flux were systematically evaluated by WRF-CMAQ model. The total emission reductions for CFIBs of PM₁₀, PM₂.₅, SO₂, NOx, Hg, As, Cd, Cr and Pb from 2015 to 2017 were 1.2 Tg, 0.53 Tg, 2.06 Tg, 0.65 Tg, 37.6 tons, 179.5 tons, 17.9 tons, 1029.3 tons and 676.0 tons, respectively. Based on meteorological fields in 2017, their corresponding national population-weighted mitigated concentration was 1.8 μg m⁻³, 1.3 μg m⁻³, 3.6 μg m⁻³, 0.6 μg m⁻³ (NO₂), 0.076 ng m⁻³, 0.37 ng m⁻³, 0.04 ng m⁻³, 1.83 ng m⁻³ and 2.3 ng m⁻³, respectively. Updating APCDs was identified as the major measure to reduce air pollutants (except NOₓ), accounting for more than 35% of emission reductions and mitigated concentration. Moreover, elimination was the major NOx reduction method, contributing to 55% of NOx emission reductions. The promoting of fuels, including replacement of CFIBs with gas-fired and biomass-fired industrial boilers, had higher environmental benefits for unit emission reductions. Furthermore, there were still more than 43,000 CFIBs with the capacity <10 t h⁻¹, accounting for 14%, 21%, and 11% of total PM₂.₅, SO₂, and NOX emissions for CFIBs in 2017; meanwhile, 20% and 59% of CFIBs did not install flue gas desulfurization and denitrification devices, respectively. Therefore, it is recommended to give priority to phase out CFIBs with capacity <10 t h⁻¹ and APCDs updating for larger capacity CFIBs in the future.
Afficher plus [+] Moins [-]