Affiner votre recherche
Résultats 1071-1080 de 2,529
Impact of Microorganisms on Arsenic Biogeochemistry: A Review Texte intégral
2014
Huang, Jen-How
Microorganisms are abundant in many surface and near-surface geochemical environments. They interact with arsenic through a variety of mechanisms, including sorption, mobilisation, precipitation and redox and methylation transformation; sometimes, this is to their benefit, while other times it is to their detriment, substantially affecting the fate and transport of arsenic in the environment. Here, an attempt was made to review the current state of knowledge concerning microbial influences on arsenic transformation and retention processes at the water–solid interface with the goal to elucidate the ability of microorganisms to react with arsenic, and to quantify the role of microorganisms in the biogeochemical arsenic cycle. Such knowledge is indispensable for comprehensive understanding arsenic behaviour in the environment and support accurate assessment of the threat of arsenic contamination to human and environmental health, as well as for the development of novel technologies for arsenic bioremediation.
Afficher plus [+] Moins [-]Pentachlorophenol Sorption by Rhizopus oryzae ENHE: pH and Temperature Effects Texte intégral
2014
León-Santiesteban, H. H. | Wrobel, K. | Garcia, L. A. | Revah, S. | Tomasini, A.
In this work, the sorption of pentachlorophenol (PCP) by non-viable biomass of Rhizopus oryzae ENHE was evaluated. The kinetics and isotherm studies were performed at pH 5.0, 6.0, and 8.0. The point of zero charge of the biomass was determined; this value allowed us to explain the changes of pH during sorption studies. The analyzed experimental kinetic data revealed that Ho’s model adjusted better to the experimental data than Lagergren’s model. PCP sorption was fast; an equilibrium sorption time was reached within 30 min, regardless of pH. PCP sorption at pH 5.0 and 6.0 was better described by the Freundlich isotherm than by the Langmuir isotherm. In contrast, at pH 8.0, the Langmuir isotherm describes better the PCP sorption. Sorption data showed that at pH 5.0 and 6.0, the sorption capacity of PCP was higher than at pH 8.0. Sorption of PCP by the fungal biomass occurred spontaneously; it was endothermic and due to physical sorption. Finally, FT-IR analysis of the dried biomass indicated that amino and hydroxyl groups were involved in the sorption of PCP. This work is one of the few reporting the effect of pH and temperature on the sorption of PCP by microbial biomass from a filamentous fungus belonging to the genus Rhizopus.
Afficher plus [+] Moins [-]The Long-Term Effect of Slowly Dissolved Crushed Basic Rocks Amelioration on Metals Bioavailability in Soil Texte intégral
2014
Jakl, Michal | Jaklová Dytrtová, Jana | Kuneš, Ivan | Baláš, Martin | Száková, Jiřina | Balík, Jiří
Concentrations and bioavailability of Al, Fe, Cd, Pb, Cu, Zn, and Mn in mountain forest soil replanted with speckled alder (Alnus incana (L.) Moench) are explored 7 years after soil surface vs. planting hole application of amphibolite and dolomitic limestone mixture. The mechanisms of slow limestone dissolution are explained and discussed from broader systematic view. The aspects of soil pH and oxidable carbon and the cation exchange capacity changes as well as changes of water-soluble, total, and effective concentrations of tested elements in the amended soils are included. The soil amendment invoked the depletion of K (and slightly Zn) effective concentration. The total concentrations of Ca, Mn, Al, and partly Mg in soil were increased owing to the presence of these elements in the amendment; the water-soluble concentrations nor effective concentrations of Al, Mn, Zn, Cu, Cd, and Pb were increased. Moreover, the effective concentration of Al in both amended variants decreased. The usual negative side effects of liming were not observed due to the slow dissolution of the amendment. Further, the surface application of the amendment is cheaper than the planting hole application, but there are some expected losses of the amendment by concurrent uptake by grass and by flushing. Figure The difference between two liming treatments in contrast to the control
Afficher plus [+] Moins [-]A New and Simple Visual Technique Based on Indigo Dye for Determination of Ozone in Ambient Air Texte intégral
2014
Garcia, Gabriel | Allen, Andrew George | Cardoso, Arnaldo Alves
Episodes of pollution resulting from high concentrations of environmental ozone frequently occur in different parts of the world. The ozone can affect human health, natural vegetation, and agricultural productivity. The monitoring of ozone concentrations is essential to aid investigation of its effects and it is also required to assess progress in public management of this pollutant. A new effective and simple technique is presented for the determination of ambient ozone concentrations using a visual procedure. The method is based on the reaction between the dye indigo and ozone, with the formation of colorless products. The bleaching intensity is proportional to the amount of ozone. An indigo color standard scale was developed with the utilization of digital image-based (DIB) calibration and printed as a wheel-chart test kit. Ozone sampling is performed using a passive sampler containing a filter impregnated with indigo. The amount of reacted ozone can be determined by visual comparison using the wheel-chart test kit. The method enables determination of ozone concentrations from 2 to 97 ppb, with intervals of 3 ppb. It does not require an energy source or any post-sampling chemical treatment or analysis, and the ozone concentration can be known immediately, in situ, at the end of the sampling period. The method offers substantial advantages in large-scale mapping and monitoring of ozone or measurements concerning occupational exposure to ozone.
Afficher plus [+] Moins [-]Comparing the Export Coefficient Approach with the Soil and Water Assessment Tool to Predict Phosphorous Pollution: The Kan Watershed Case Study Texte intégral
2014
Delkash, Madjid | Al-Faraj, Furat A. M. | Scholz, Miklas
Water quality protection has become a key concern in water resources development and management. Uncontrolled nutrient input may challenge the quality of some water bodies. This study uses the relatively steep Kan watershed located in the north-west of Tehran (Iran) as an example case study, where an artificial lake is currently under construction for recreational purposes. Two approaches to predict the total annual phosphorous load were assessed: the soil and water assessment tool (SWAT) and the export coefficient approach. River discharge and sediment transport were simulated prior to modeling of the total phosphorous (TP) load in SWAT to make the model more accurate. In addition, an upstream to downstream calibration method was utilized. Findings reveal that the SWAT-simulated phosphorous load had sound Nash–Sutcliffe efficiency (ENS) values (ENSof 75 % for calibration and ENSof 52 % for validation). The relative error in estimating annual TP load was 7 %. The export coefficient approach assigning coefficients of export for each land use is known as an alternative method that can be used for estimating the TP load. Four sets of export coefficients were selected from the literature to examine their suitability in TP load prediction. The results showed significant errors in TP load prediction, which indicates that export coefficients are likely to be watershed-specific. Likewise, the export coefficients were found to vary through four wet months with errors ranging from 9 % to 33 %. This paper demonstrates that the export coefficient method may estimate the pollution load in the Kan watershed with less data than the advance SWAT model. However, it is associated with a higher level of error.
Afficher plus [+] Moins [-]Drainage Water Reuse: State of Control and Process Capability Evaluation Texte intégral
2014
Shaban, M.
The dynamic behavior of water quality and quantity in the Egyptian drains is often viewed as a disruption to the normal operation and performance of the process of water reuse in irrigation. The control of such behavior has been challenging and often elusive in practice. Therefore, this paper presents a framework to advance the understanding and opportunities for improving the reuse process by developing a multivariate process control model. The model starts with preliminary analysis for water quality data that are collected at the reuse site on the examined drain. This phase comprises investigating data distribution and dependency. Then, univariate control charts are used to investigate the state of control for the independent and normally distributed variables. For dependent variables, principal components analysis is used as a method of synthesizing the variables information. In this case, principal component scores are displayed using multivariate control charts. If in-control case existed, process capability index is used to provide a numerical measure of whether or not the reuse process is capable of producing water that satisfies the irrigation quality standards. Since the model will only detect assignable causes if out-of-control or in-capable case existed, management, operational, and/or engineering action will usually be necessary to sustain the reuse process. In these cases, an action plan in response to the model signals will be vital. The main function of the proposed model is to safely manage the reuse practice using statistical quality control techniques. The model was demonstrated using water quality data collected during the period from January 2006 to July 2011 from Hanut (EH02) and El-Salam 3 (ESL03) pump stations along Hadus drain, Eastern Nile Delta-Egypt. The recommended model is automatic, algorithmic, self-tuning, and computerizable.
Afficher plus [+] Moins [-]Fast and Highly Efficient Removal of Chromate from Aqueous Solution Using Nanoscale Zero-Valent Iron/Activated Carbon (NZVI/AC) Texte intégral
2014
Xu, Chun-Hua | Zhu, Liu-jia | Wang, Xiao-Hong | Lin, Sheng | Chen, Ya-ming
Nanoscale zero-valent iron supported on activated carbon (NZVI/AC) was synthesized by a modified potassium borohydride reduction method and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), and specific surface area (SSA). The effects of NZVI loading on AC, NZVI/AC dosage, pH, the initial concentration of Cr(VI), and temperature on the removal of Cr(VI) were investigated. XRD confirmed the existence of Fe⁰and TEM revealed that the material consisted of mainly spherical bead-like particles aggregated into chains of individual units. The SSA of the iron particles and the removal efficiency of Cr(VI) indicated that the optimum iron loading was 25 %. Increase of NZVI/AC dosage and reaction concentration abated the removal of Cr(VI). Kinetics studies showed that removal of Cr(VI) is a two-step reaction and each step could be expressed by pseudo-first-order reaction kinetics, with initial Cr(VI) and temperature as variables. Total Cr was always almost equal to that of Cr(VI) under all tested conditions, which indicated that little Cr(III) existed in solution. Iron ions, which could cause secondary pollution in the environment, are almost not released from this system. These results demonstrated that NZVI/AC could potentially be used for Cr(VI) removal.
Afficher plus [+] Moins [-]Short-Term Impacts of Frangula alnus Litter on Forest Soil Properties Texte intégral
2014
Stokdyk, Joel P. | Herrman, Kyle S.
Effects of invasive plants on soil properties and microbial communities have been observed, but the mechanisms driving change are less obvious. The objective of this study was to determine the short-term impacts of litter from the invasive shrub Frangula alnus on soil properties and soil microorganims. In situ soil rings (6-cm diameter by 7-cm deep) received the following aqueous treatments: deionized water, dextrose, cellulose, Quercus alba leaf extract, and F. alnus leaf extract (n = 7) and were sampled 1, 2, and 4 weeks after additions were made. Microbial biomass carbon did not respond differently to treatments containing carbon (C) sources at any sampling period, suggesting that C quality had little impact on microbial abundance at this site. However, in weeks 1 and 2, soil treated with F. alnus had significantly higher total extractable nitrogen (N) than the control, dextrose, cellulose, and Q. alba extract (all comparisons for both weeks p < 0.001). We suspect that the increase in extractable N in the F. alnus-treated soil was due to enhanced N mineralization. In addition, changes to the microbial biomass C-to-N ratio in the F. alnus-treated soil indicated that microbial function had been altered. Overall, results from this study suggest that F. alnus leaf litter has the capacity to alter soil properties and microbial function by stimulating N mineralization.
Afficher plus [+] Moins [-]Field Study of an Innovative Sediment Capture Device: Bottom Grid Structure Texte intégral
2014
He, Cheng | Post, Yvonne | Rochfort, Quintin | Maršálek, Jiři
An innovative device for enhancing particle settling, referred to as the bottom grid structure (BGS), was tested in the forebay of an urban stormwater detention pond in two design variants. Results showed that compared to the simulated bare pond bottom (i.e., a reference condition), the BGSs collected more sediments during a three-month test period and also captured and retained some very fine particles (<32 μm) even under high flows. The improvements of particle removal rates expressed in multiples of removals for the bare bottom were 3.6, 7.3, and 11.2, respectively, for the particle size ranges 106 μm < D < 250 μm, 32 μm < D < 106 μm, and D < 32 μm. Because the BGS can retain much smaller particles than bare bottom sediment traps, the application of the BGS can be considered as equivalent to increasing the settling area of a particle removal facility about 5 to 60 times, depending on the size of settleable particles under consideration. This characteristic distinguishes the BGS from other sedimentation enhancement methods and makes it possible to treat stormwater with a wide particle size spectrum under high flow rates, with a relatively small footprint, and without using chemical settling aids or filtration.
Afficher plus [+] Moins [-]Study on the dynamics of grass microgametophytes from urban vegetation Texte intégral
2014
Ratajová, Alena
Urban sprawl and increasing economical pressure on agricultural production raises new unprecedented environmental questions. The presented study proved that higher level of fertilization of the urban vegetation significantly increases the concentration of male microgametophytes in the air during the flowering season. The levels of fertilization had no significant effect on the pollen grain size, nor on the profile and content of the phenolic compounds, however, the content of tryptophan (protein with a key role in allergies) was significantly influenced. The metabolism of tryptophan and its role in human imunilogy is not yet completely understood, however, it is recommended to avoid unnecessary fertilization in urbanized areas.
Afficher plus [+] Moins [-]