Affiner votre recherche
Résultats 1091-1100 de 7,290
Human health impact due to arsenic contaminated rice and vegetables consumption in naturally arsenic endemic regions Texte intégral
2022
Rokonuzzaman, MD. | Li, W.C. | Wu, C. | Ye, Z.H.
Rice and vegetables cultivated in naturally arsenic (As) endemic areas are the substantial source of As body loading for persons using safe drinking water. However, tracing As intake, particularly from rice and vegetables by biomarker analysis, has been poorly addressed. This field investigation was conducted to trace the As transfer pathway and measure health risk associated with consuming As enriched rice and vegetables. Purposively selected 100 farmers from five sub-districts of Chandpur, Bangladesh fulfilling specific requirements constituted the subjects of this study. A total of 100 Irrigation water, soils, rice, and vegetable samples were collected from those farmers’ who donated scalp hair. Socio-demographic and food consumption data were collected face to face through questionnaire administration. The mean As level in irrigation water, soils, rice, vegetables, and scalp hairs exceeded the acceptable limit, while As content was significant at 0.1%, 5%, 0.1%, 1%, and 0.1% probability levels, respectively, in all five locations. Arsenic in scalp hair is significantly (p ≤ 0.01) correlated with that in rice and vegetables. The bioconcentration factor (BCF) for rice and vegetables is less than one and significant at a 1% probability level. The average daily intake (ADI) is higher than the RfD limit for As. Both grains and vegetables have an HQ (hazard quotient) > 1. Maximum incremental lifetime cancer risk (ILCR) showed 2.8 per 100 people and 1.6 per 1000 people are at considerable and threshold risk, respectively. However, proteinaceous and nutritious food consumption might have kept the participants asymptomatic. The PCA analysis showed that the first principle component (PC1) explains 91.1% of the total variance dominated by As in irrigation water, grain, and vegetables. The dendrogram shows greater variations in similarity in rice and vegetables As, while the latter has been found to contribute more to human body loading compared to grain As.
Afficher plus [+] Moins [-]Polystyrene microplastic particles: In vivo and in vitro ocular surface toxicity assessment Texte intégral
2022
Zhou, Xiaoping | Wang, Guoliang | An, Xiaoya | Wu, Jun | Fan, Kai | Xu, Lina | Li, Cheng | Xue, Yuhua
Microplastics (MPs) have become a global concern as a key environmental pollutant. MPs are widely found in oceans, rivers, bottled water, plastic-packaged foods, and toiletries. The ocular surface is the exposed mucosal tissue, which comes in contact with MP particles contained in toiletries, tap water, cosmetics, and air. However, the effects of MPs on ocular surface health are still unclear. In this study, the toxic effects of polystyrene MPs (PS-MPs) on the ocular surface in vivo and in vitro were explored. The results demonstrated that 50 nm or 2 μm PS-MPs, following exposure for 48 h appeared in the cytoplasm of two kinds of eye cells in vitro and caused a concentration dependent reduction in cell viability, further causing oxidative stress and cell apoptosis. In addition, after treatment for 2 or 4 weeks, 50 nm and 2 μm PS-MPs were deposited in the conjunctival sac of mice. After 2 and 4 weeks of PS-MP treatment, the number of goblet cells in the lower eyelid conjunctival sac decreased to 65% and 40% of that in the control group, respectively. Moreover, dry eye like ocular surface damage and inflammation of conjunctiva and lacrimal gland in mice were observed. In conclusion, this study revealed that PS-MPs could cause ocular surface dysfunctions in mice, thus providing a new perspective for the toxic effects of MPs on ocular surface.
Afficher plus [+] Moins [-]Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China Texte intégral
2022
Yang, Xiaolong | Hu, Chengye | Wang, Bin | Lin, Hao | Xu, Yongping | Guo, Hao | Liu, Guize | Ye, Jinqing | Gao, Dengzhou
The mineralization and immobilization of nitrogen (N) are critical biogeochemical transformations in estuarine and coastal sediments. However, the biotic and abiotic mechanisms that regulate the two processes in different aged mangrove sediments remain poorly understood. Here, we used ¹⁵N isotope dilution method to investigate the changes in sediment N mineralization (GNM) and NH₄⁺ immobilization (GAI) of different aged mangrove habitats (including 0, 10, and 20 years Sonneratia apetala, as well as >40 years mature native Kandelia obovata) in Qi'ao Island, Guangdong Province, China. Measured GNM and GAI rates ranged from 2.69 to 17.53 μg N g⁻¹ d⁻¹ and 2.29–21.38 μg N g⁻¹ d⁻¹, respectively, which varied both spatially and seasonally. The ratio of GNM to total N (PAM%, 0.24–0.86%) also varied spatially and seasonally, but the ratio of GAI to GNM (RAI, 0.79–1.54) only varied spatially. Mangrove restoration significantly increased the N mineralization and immobilization rates, but remained lower than those of mature native Kandelia obovata habitat. The sediment bacterial abundance, labile organic matter and temperature are the dominant factors in controlling N mineralization and immobilization. Our findings suggested that exotic mangrove Sonneratia aperale plantation can enhance sediment N mineralization and immobilization rates and improve N stability through accumulated biomass rapidly. Overall, these results provide new insights into sediment N transformation processes and associated influencing mechanisms in such intertidal wetlands profoundly influenced by human activities.
Afficher plus [+] Moins [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza C. | van Gestel, Cornelis A.M. | Verweij, Rudo A. | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos A. | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pelosi, Céline
Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza C. | van Gestel, Cornelis A.M. | Verweij, Rudo A. | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos A. | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pelosi, Céline
Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg⁻¹, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQᵢ) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic “cocktail effects”.
Afficher plus [+] Moins [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Afficher plus [+] Moins [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Texte intégral
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel [Bruxelles] (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Afficher plus [+] Moins [-]Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Texte intégral
2022
Schell, Theresa | Hurley, Rachel | Buenaventura, Nina T. | Mauri, Pedro V. | Nizzetto, Luca | Rico, Andreu | Vighi, M.
Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Texte intégral
2022
Schell, Theresa | Hurley, Rachel | Buenaventura, Nina T. | Mauri, Pedro V. | Nizzetto, Luca | Rico, Andreu | Vighi, M.
Sewage sludge used as agricultural fertilizer has been identified as an important source of microplastics (MPs) to the environment. However, the fate of MPs added to agricultural soils is largely unknown. This study investigated the fate of MPs in agricultural soils amended with sewage sludge and the role of surface water runoff as a mechanism driving their transfer to aquatic ecosystems. This was assessed using three experimental plots located in a semi-arid area of Central Spain, which were planted with barley. The experimental plots received the following treatments: (1) control or no sludge application; (2) historical sludge application, five years prior to the experiment; and (3) sludge application at the beginning of the experiment. MPs were analyzed in surface water runoff and in different soil layers to investigate transport and infiltration for one year. The sewage sludge used in our experiment contained 5972–7771 MPs/kg dw. Based on this, we estimated that about 16,000 MPs were added to the agricultural plot amended with sludge. As expected, the sludge application significantly increased the MP concentration in soils. The control plot contained low MP concentrations (31–120 MPs kg⁻¹ dw), potentially originating from atmospheric deposition. The plot treated five years prior to the experiment contained 226–412 and 177–235 MPs kg⁻¹ dw at the start and end of the experiment, respectively; while the recently treated plot contained 182–231 and 138–288 MPs kg⁻¹ dw. Our study shows that MP concentrations remain relatively constant in agricultural soils and that the MP infiltration capacity is very low. Surface water runoff had a negligible influence on the export of MPs from agricultural soils, mobilizing only 0.2–0.4% of the MPs added with sludge. We conclude that, in semi-arid regions, agricultural soils can be considered as long-term accumulators of MPs.
Afficher plus [+] Moins [-]Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Texte intégral
2022
Schell, Theresa | Hurley, Rachel | Buenaventura, Nina Tuscano | Mauri, Pedro V. | Nizzetto, Luca | Rico, Andreu | Vighi, Marco
Embargo until November 18, 2023 | Sewage sludge used as agricultural fertilizer has been identified as an important source of microplastics (MPs) to the environment. However, the fate of MPs added to agricultural soils is largely unknown. This study investigated the fate of MPs in agricultural soils amended with sewage sludge and the role of surface water runoff as a mechanism driving their transfer to aquatic ecosystems. This was assessed using three experimental plots located in a semi-arid area of Central Spain, which were planted with barley. The experimental plots received the following treatments: (1) control or no sludge application; (2) historical sludge application, five years prior to the experiment; and (3) sludge application at the beginning of the experiment. MPs were analyzed in surface water runoff and in different soil layers to investigate transport and infiltration for one year. The sewage sludge used in our experiment contained 5972–7771 MPs/kg dw. Based on this, we estimated that about 16,000 MPs were added to the agricultural plot amended with sludge. As expected, the sludge application significantly increased the MP concentration in soils. The control plot contained low MP concentrations (31–120 MPs kg−1 dw), potentially originating from atmospheric deposition. The plot treated five years prior to the experiment contained 226–412 and 177–235 MPs kg−1 dw at the start and end of the experiment, respectively; while the recently treated plot contained 182–231 and 138–288 MPs kg−1 dw. Our study shows that MP concentrations remain relatively constant in agricultural soils and that the MP infiltration capacity is very low. Surface water runoff had a negligible influence on the export of MPs from agricultural soils, mobilizing only 0.2–0.4% of the MPs added with sludge. We conclude that, in semi-arid regions, agricultural soils can be considered as long-term accumulators of MPs. | publishedVersion
Afficher plus [+] Moins [-]Concentrations, homolog profiles, and risk assessment of short- and medium-chain chlorinated paraffins in soil around factories in a non-ferrous metal recycling park Texte intégral
2022
Weng, Jiyuan | Zhang, Peixuan | Gao, Lirong | Zhu, Shuai | Liu, Yang | Qiao, Lin | Zhao, Bin | Liu, Yin | Xu, Ming | Zheng, Minghui
Chlorinated paraffins (CPs) are used as additives in metal processing in the metal smelting industry. Data on CPs in the environment near metal smelting plants are limited. The objectives of this study were to investigate the concentrations and congener profiles of CPs in soil around factories in a non-ferrous metal recycling park located in Hebei, China, and to investigate human exposure to CPs in the soil. The concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were determined by two-dimensional gas chromatography with electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 121–5159 ng/g and 47–6079 ng/g, respectively. Generally, the CP concentrations in soils around the factories were relatively high compared with those near other contaminated sites and in rural and urban areas. There were significant correlations between the MCCP concentrations, some SCCP carbon homologs, and the total organic carbon content (p < 0.05). The major SCCP and MCCP congener groups were C₁₀Cl₆–₇ and C₁₅–₁₆Cl₅, respectively. Hierarchical cluster analysis and principal component analysis indicated that SCCPs and MCCPs in the soil might originate from extreme pressure additives containing CP-42 and CP-52 and CP-containing waste material from the factories. The concentrations in two samples collected near a metal recycling factory posed a moderate risk according to a risk assessment conducted using risk quotients. Further risk assessment showed that the CPs concentrations in soil did not pose significant health risks to either children or adults.
Afficher plus [+] Moins [-]Calcium-enriched biochar modulates cadmium uptake depending on external cadmium dose Texte intégral
2022
Kováčik, Jozef | Dresler, Sławomir | Sowa, Ireneusz | Babula, Petr | Antunes, Elsa
The impact of calcium-enriched biochar (BC, containing Ca, Al, Fe and P as dominant elements in the range of 6.9–1.3% with alkaline pH) obtained from sewage sludge (0.1 or 0.5% in the final soil) on cadmium-induced toxicity (final dose of 1.5 mg Cd/kg in control and 4.5 or 16.5 mg Cd/kg soil in low and high Cd treatment) was tested in medicinal plant Matricaria chamomilla. Low Cd dose had typically less negative impact than high Cd dose at the level of minerals and metabolites and the effect of BC doses often differed. Contrary to expectations, 0.5% BC with a high Cd dose increased Cd accumulation in plants about 2-fold. This was reflected in higher signals of reactive oxygen species, but especially the high dose of BC increased the amount of antioxidants (ascorbic acid and non-protein thiols), minerals and amino acids in shoots and/or roots and usually mitigated the negative effect of Cd. Surprisingly, the relationship between BC and soluble phenols was negative at high BC + high Cd dose, whereas the effect of Cd and BC on organic acids (mainly tartaric acid) differed in shoots and roots. Interestingly, BC alone applied to the control soil (1.5 mg total Cd/kg) reduced the amount of Cd in the plants by about 30%. PCA analyses confirmed that metabolic changes clearly distinguished the high Cd + high BC treatment from the corresponding Cd/BC treatments in both shoots and roots. Thus, it is clear that the effect of biochar depends not only on its dose but also on the amount of Cd in the soil, suggesting the use of Ca-rich biochar both for phytoremediation and safer food production.
Afficher plus [+] Moins [-]Enhanced oxidation and stabilization of arsenic in a soil-rice system by phytosynthesized iron oxide nanomaterials: Mechanistic differences under flooding and draining conditions Texte intégral
2022
Lin, Jiajiang | Wu, Weiqin | Khan, Nasreen Islam | Owens, Gary | Chen, Zuliang
Despite arsenic (As) bioavailability being highly correlated with water status and the presence of iron (Fe) minerals, limited information is currently available on how externally applied Fe nanomaterials in soil-rice systems affect As oxidation and stabilization during flooding and draining events. Herein, the stabilization of As in a paddy soil by a phytosynthesized iron oxide nanomaterials (PION) and the related mechanism was investigated using a combination of chemical extraction and functional microbe analysis in soil at both flooding (60 d) and draining (120 d) stages. The application of PION decreased both specifically bound and non-specifically bound As. The As content in rice root, stem, husk and grain was reduced by 78.5, 17.3, 8.4 and 34.4%, respectively, whereas As(III) and As(V) in root declined by 96.9 and 33.3% for the 1% PION treatment after 120 d. Furthermore, the 1% PION treatment decreased the ratio of As(III)/As(V) in the rhizosphere soil, root and stem. Although PION had no significant effect on the overall Shannon index, the distribution of some specific functional microbes changed dramatically. While no As(III) oxidation bacteria were found at 60 d in any treatments, PION treatment increased As(III) oxidation bacteria by 3–9 fold after 120 d cultivation. Structural equation model analysis revealed that the ratio of Fe(III)/Fe(II) affected As stabilization directly at the flooding stage, whereas nitrate reduction and As(III) oxidation microbial groups played a significant role in the stabilization of As at the draining stage. These results highlight that PION exhibits a robust ability to reduce As availability to rice, with chemical oxidation, reduction inhibition and adsorption dominating at the flooding stage, while microbial oxidation, adsorption and coprecipitation dominant during draining.
Afficher plus [+] Moins [-]A selective hydrometallurgical method for scandium recovery from a real red mud leachate: A comparative study Texte intégral
2022
Salman, Ali Dawood | Juzsakova, Tatjána | Jalhoom, Moayyed G. | Abdullah, Thamer Adnan | Le, Phuoc-Cuong | Viktor, Sebestyen | Domokos, Endre | Nguyen, X Cuong | La, D Duong | Nadda, Ashok K. | Nguyen, D Duc
The aim of this study was to recover Sc as the main product and Fe as a by-product from Hungarian bauxite residue/red mud (RM) waste material by solvent extraction (SX). Moreover, a new technique was developed for the selective separation of Sc and Fe from real RM leachates. The presence of high Fe content (∼38%) in RM makes it difficult to recover Sc because of the similarity of their physicochemical properties. Pyrometallurgical and hydrometallurgical methods were applied to remove the Fe prior to SX. Two protocols based on organophosphorus compounds (OPCs) were proposed, and the main extractants were evaluated: bis(2-ethylhexyl) phosphoric acid (D2EHPA/P204) and tributyl phosphate (TBP). The results showed that SX using diethyl ether and tri-n-octylamine (N₂₃₅) was efficient in extracting Fe(III) from the HCl leachate as HFeC1₄. Over 97% of Sc was extracted by D2EHPA extractant under the following conditions; 0.05 mol/L of D2EHPA concentration, A/O phase ratio of 3:1, pH 0–1, 10 min of shaking time, and a temperature of 25 °C. Sc(OH)₃ as a precipitate was efficiently obtained by stripping from the D2EHPA organic phase by 2.5 mol/L of NaOH with a stripping efficiency of 95%. In the TBP system, 99% of Sc was extracted under the following conditions: 12.5% vol of TBP, an A/O phase ratio of 3:1, 10 min of shaking time, and a temperature of 25 °C. The Sc contained in the TBP organic phase could be efficiently stripped by 1 mol/L of HCl with a stripping efficiency of 92.85%.
Afficher plus [+] Moins [-]Geochemical records of Lake Erhai (South-Western China) reveal the anthropogenically-induced intensification of hypolimnetic anoxia in monomictic lakes Texte intégral
2022
Zhang, Yongdong | Fu, Huan | Liao, Hanliang | Chen, Huihui | Liu, Zhengwen
In monomictic lakes, hypolimnetic anoxia is becoming severe in extent and duration over the past few decades. Understanding historical trends in hypolimnetic dissolved oxygen (DO) levels and the factors controlling them is crucial for effective protection and management of monomictic lakes everywhere, but the issue remains little studied in China. Here, our study elucidated the variation of hypolimnion DO and organic matter (OM) input in Lake Erhai (a typical monomictic lake in South-Western China) during the past 200 years, by using the geochemical profiles of elements (C, N, P, S, Mo, Ca, and Al) and aliphatic hydrocarbons in a dated sediment core. The values of element proxies (S concentrations, S/Al ratios, Mo enrichment factor, and total organic carbon/total P ratios) and pristane/phytane (Pr/Ph) ratios reflect relatively limited development of anoxia in the lake hypolimnion before 1990. Meanwhile, the n-alkane proxies (short-chain, middle-chain, and long-chain n-alkane abundances, n-C₁₇/n-C₁₆ alkane ratios, and Paq) indicate relatively scant inputs of OM from phytoplankton and relatively high inputs of OM from terrestrial plants or from submerged macrophytes. Taken together the results show that OM supplied in this period did not deteriorate hypolimnion DO in Lake Erhai. The element proxies and Pr/Ph ratios point to that the lake had experienced a pronounced intensification of hypolimnetic anoxia after 1990, and the n-alkane proxies indicate that the lake was susceptible to severe eutrophication and phytoplankton blooms in this period. The synchronous sharp variation implies the decay of massive phytoplankton OM had severely consumed oxygen in the lake hypolimnion. The large surface area/depth ratio in Lake Erhai is conducive for an overturn of the water column during wind disturbance, which allowed the water column stratification and relating effects (e.g., hypolimnetic anoxia) less vulnerable to some aspects of climate change.
Afficher plus [+] Moins [-]