Affiner votre recherche
Résultats 1111-1120 de 4,935
Waste water discharge from a large Ni-Zn open cast mine degrades benthic integrity of Lake Nuasjärvi (Finland) Texte intégral
2019
Luoto, Tomi P. | Leppänen, Jaakko Johannes | Weckström, Jan
The Talvivaara/Terrafame multi-metal mining company is Europe’s largest nickel open cast mine, it is also known for the largest wastewater leakage in the Finnish mining history and a series of other accidents. In this paleolimnological study, influences of a recently constructed treated waste water discharge pipeline into Lake Nuasjärvi were investigated by analyzing past (pre-disturbance) and present community compositions of key aquatic organism groups, including diatoms, Cladocera and Chironomidae, along spatial (distance, water depth) gradients. In addition to defining ecological changes and impacts of saline mine waters in the lake, chironomids were used to quantitatively reconstruct bottom water oxygen conditions before and after the pipe installation (in 2015). The diatom and cladoceran communities, which reflect more the open-water habitat, showed only relatively minor changes throughout the lake, but a general decrease in diversity was observed within both groups. Chironomids, which live on substrates, showed more significant changes, including complete faunal turnovers and deteriorated benthic quality, especially at the sites close to the pipe outlet, where also chironomid diversity was almost completely lost. Furthermore, the reconstructed hypolimnetic oxygen values indicated a major oxygen decline and even anoxia at the sites near the pipe outlet. The limnoecological influence of the pipe decreased at sites located counter-flow or behind underwater barriers suggesting that the waste waters currently have location-specific impacts. Our study clearly demonstrates that whereas the upper water layers appear to have generally maintained their previous state, the deep-water layers close to the pipe outlet have lost their ecological integrity. Furthermore, the current hypolimnetic anoxia close to the pipe indicates enhanced lake stratification caused by the salinated mine waters. This study clearly exhibits the need to investigate different water bodies at several trophic levels in a spatiotemporal context to be able to reliably assess limnoecological impacts of mining.
Afficher plus [+] Moins [-]Kinetic characteristics and predictive models of methylmercury production in paddy soils Texte intégral
2019
Du, Shuyang | Wang, Xingxiang | Zhang, Taolin | Ding, Changfeng
Understanding the mercury (Hg) methylation process is important for the management of paddy soils contaminated by Hg. In this work, samples of eighteen paddy soils with varying soil properties were spiked with inorganic Hg and subjected to a 90 d flooding period. Soil pH and redox potential (Eh) were measured in situ at intervals, and soils were sampled for the analysis of methylmercury (MeHg). The Hg methylation efficiency increased with flooding time and reached a relatively steady state at 30 d of incubation, ranging from 0.08% to 2.52%, and was significantly correlated with the in situ soil pH and Eh. The Elovich equation could adequately describe the kinetic production of MeHg. MeHg production was well predicted by the in situ soil pH and Eh of flooded soils, in addition to the organic matter content of air-dried soil samples and flooding time. The two predictive models explained 78% and 68% of the variability of the Hg methylation efficiency. The results suggested that the methylation of inorganic Hg in paddy soils after flooding can be predicted as a function of routinely measured soil properties and flooding time, a correlation that can be utilized to improve understanding of the extent of Hg methylation and the management of Hg-contaminated paddy soils.
Afficher plus [+] Moins [-]Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource Texte intégral
2019
Cinti, D. | Vaselli, O. | Poncia, P.P. | Brusca, L. | Grassa, F. | Procesi, M. | Tassi, F.
659 water samples from springs and wells in the Sabatini and Vicano-Cimino Volcanic Districts (central Italy) were analyzed for arsenic (As), fluoride (F⁻) and radon (²²²Rn) concentrations. Waters mostly sourced from a shallow and cold aquifer hosted within volcanic rocks, which represents the main public drinking water supply. Cold waters from perched aquifers within sedimentary formations and thermal waters related to a deep hydrothermal reservoir were also analyzed. The highest concentrations of As and F⁻ were measured in the thermal waters and attributed to their enhanced mobility during water-rock interaction processes at hydrothermal temperatures. Relatively high concentrations of As and F⁻ were also recorded in those springs and wells discharging from the volcanic aquifer, whereas waters hosted in the sedimentary units showed significantly lower contents. About 60% (As) and 25% (F⁻) of cold waters from the volcanic aquifer exceeded the maximum allowable concentrations for human consumption. Such anomalously high levels of geogenic pollutants were caused by mixing with fluids upwelling through faulted zones from the hydrothermal reservoir. Chemical weathering of volcanic rocks and groundwater flow path were also considered to contribute to the observed concentrations. Cold waters from the volcanic aquifer showed the highest ²²²Rn concentrations, resulting from the high contents of Rn-generating radionuclides in the volcanic units. Approximately 22% of these waters exceeded the recommended value for human consumption. A specific Quality Index (QI), comprised between 1 (very low) and 4 (very high), was computed for each water on the basis of As, F⁻ and ²²²Rn concentrations and visualized through a spatial distribution map processed by means of geostatistical techniques. This map and the specific As, F⁻ and ²²²Rn maps can be regarded as useful tools for water management by local authorities to both improve intervention plans in contaminated sectors and identify new water resources suitable for human consumption.
Afficher plus [+] Moins [-]Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms Texte intégral
2019
Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms Texte intégral
2019
The response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed). Regarding dominant phyla, TCS significantly reduced the relative abundance of Bacteroidetes and Firmicutes at these concentrations, whereas the relative abundance of Chloroflexi and Cyanobacteria increased. In the presence of benthic macroinvertebrates, the sediment bacterial community was affected by 8 μg TCS/g dw sed as well. However, the presence of benthic macroinvertebrates did not cause measurable changes to bacterial community in unspiked (i.e., control) sediment. These results indicate that TCS alone would not alter the sediment bacterial community at environmentally relevant concentrations (up till 8 μg/g dw sed), but may have an effect in combination with the presence of benthic macroinvertebrates. Therefore, we recommend to include benthic macroinvertebrates when assessing the response of sediment bacterial communities during exposure to environmental stress such as organic contaminants.
Afficher plus [+] Moins [-]Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms Texte intégral
2019
Peng, Feng Jiao | Diepens, Noël J. | Pan, Chang Gui | Ying, Guang Guo | Salvito, Daniel | Selck, Henriette | Van den Brink, Paul J.
The response of sediment bacterial communities in subtropical freshwater benthic microcosms to sediment-associated triclosan (TCS; 28 d exposure) was analysed using Illumina high-throughput sequencing. This study highlights the interactive effects of TCS and the presence of benthic macroinvertebrates (Limnodrilus hoffmeisteri and Viviparidae bellamya) on sediment bacterial communities. Our results show that TCS alone significantly altered the taxonomic composition and decreased alpha diversity of sediment bacterial communities at concentrations ≥80 μg TCS/g dry weight (dw) sediment (sed). Regarding dominant phyla, TCS significantly reduced the relative abundance of Bacteroidetes and Firmicutes at these concentrations, whereas the relative abundance of Chloroflexi and Cyanobacteria increased. In the presence of benthic macroinvertebrates, the sediment bacterial community was affected by 8 μg TCS/g dw sed as well. However, the presence of benthic macroinvertebrates did not cause measurable changes to bacterial community in unspiked (i.e., control) sediment. These results indicate that TCS alone would not alter the sediment bacterial community at environmentally relevant concentrations (up till 8 μg/g dw sed), but may have an effect in combination with the presence of benthic macroinvertebrates. Therefore, we recommend to include benthic macroinvertebrates when assessing the response of sediment bacterial communities during exposure to environmental stress such as organic contaminants.
Afficher plus [+] Moins [-]Performance of a novel magnetic solid-phase-extraction microsphere and its application in the detection of organic micropollutants in the Huai River, China Texte intégral
2019
Solid phase extraction has been increasingly applied for the detection of organic micropollutants (OMPs). However, time-consuming and high-cost disadvantages also limit the widespread use of this method, especially for the extraction of large-volume field water samples. In this study, a gas chromatography-mass spectrometry (GC-MS) method based on the magnetic microsphere (M150) solid-phase-extraction (MSPE) was established to investigate the OMPs in source water throughout the whole Huai River. In brief, the results demonstrated that the extraction efficiency of the M150 was superior to that of C₁₈ and HLB for the selected OMPs, including species of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), phthalate esters (PAEs) and nitrobenzenes (NBs), and the method detection limits of M150 for these OMPs were comparable to those of C₁₈ and HLB. The optimized conditions of extraction and elution were the 100 mg/L dosages of microspheres, extraction time of 60 min and pH of 2, and the eluent with a similar polarity, hydrophobicity and molecular structure to the OMPs rendered higher elution efficiencies. A total of 21 types of OMPs affiliating to PAHs, OCPs, PAEs and NBs were detected by the established method, with the total concentrations of 505–2310 ng/L in source water of the Huai River. Spatial differences of the OMPs were also observed, demonstrating the link between pollutant profiles and geographical locations. This study provides an alternative to enrich OMPs in filed water samples, and it reveals pollutant profiles of source water throughout the whole Huai River.
Afficher plus [+] Moins [-]Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: Insights from batch experiments, XPS spectroscopy and DFT calculation Texte intégral
2019
Efficient containment and capture of uranium (U(VI)) from aqueous solution is an essential component to ensure socially and environmentally sustainable development. Herein, the three-dimensional graphene/titanium dioxide composite (3D GA/TiO₂) was synthesized and applied as an effective adsorbent to remove U(VI) from wastewater as a function of contact time, temperature, pH and ion strength. The 3D GA/TiO₂ material was characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The batch experiments results indicated that the adsorption of U(VI) on materials were fitted with the pseudo-second order kinetics and Langmuir models. More specifically, 3D GA/TiO₂ (441.3 mg/g) was observed to outperform the GO (280.0 mg/g), rGO (140.9 mg/g) and TiO₂ (98.5 mg/g) at pH 5.0, which was attributable to the excellent cooperative effects. Furthermore, XPS analyses and DFT calculations confirmed the formation of surface complexes between oxygen-containing group and U(VI) with the U–O bonds length of 2.348 Å (U–O1) and 2.638 Å (U–O2). Meanwhile, the adsorption energy was calculated to be 1.60 eV, which showed a very strong chemisorption during the interaction process. It is believed that the 3D GA/TiO₂ revealed good removal performance for uranyl ions, which showed a great potential application to control the nuclear industrial pollution.
Afficher plus [+] Moins [-]Long-term effects of environmentally relevant concentration of Ag nanoparticles on the pollutant removal and spatial distribution of silver in constructed wetlands with Cyperus alternifolius and Arundo donax Texte intégral
2019
Cao, Chong | Huang, Juan | Guo, Yang | Yan, Chun Ni | Xiao, Jun | Ma, Yi Xuan | Liu, Jia Liang | Guan, Wen Zhu
The widely usage of silver nanoparticles in a range of consumer products inevitably results in its being released to the wastewater. As a result, the potential negative effects associated with AgNPs on wastewater treatment systems need to be assessed to develop the regulatory guidelines. In this paper, the exposure experiment at environmentally relevant concentration (100 μg L⁻¹) were conducted to demonstrate the effects of AgNPs on the pollutant removals in constructed wetlands (CWs) with different plants and the spatial distribution of silver. Before adding AgNPs, the system with Arundo donax (VF2) had the better nitrogen removal than Cyperus alternifolius (VF1). After exposure for about 94 d, the average removal efficiencies of NH₄⁺-N significantly reduced by 32.43% and 23.92%, TN of 15.82% and 17.18% and TP of 22.74% and 20.46% in VF1 and VF2, respectively, while the COD removal had no difference. However, presence of 100 μg L⁻¹ AgNPs for about 450 d showed no inhibition effects on nutrient removals in two experimental CWs. Two wetlands showed high removal efficiencies of about 98% on AgNPs, indicating CWs could play a crucial role to control the AgNPs release to environment. It was found that AgNPs mainly accumulated in the soil layer with the Ag content of 0.45–5.96 μg g⁻¹ dry weight in lower soil and 2.84–11.37 μg g⁻¹ dry weight in upper soil. The roots of Cyperus alternifolius absorbed more AgNPs, with higher bioconcentration factors (1.32–1.44) than that of 0.59 in Arundo donax. The differences of translocation factors on leaves and stems in two test plants showed that AgNPs assimilated by roots in Cyperus alternifolius were more easily transferred to the leaves. The obtained results showed that the macrophyte Cyperus alternifolius could be better choice for immobilization of AgNPs.
Afficher plus [+] Moins [-]Recent advances in toxicological research of nanoplastics in the environment: A review Texte intégral
2019
Nanoplastics have attracted increasing attention in recent years due to their widespread existence in the environment and the potential adverse effects on living organisms. In this paper, the toxic effects of nanoplastics on organisms were systematically reviewed. The translocation and absorption of nanoplastics, as well as the release of additives and contaminants adsorbed on nanoplastics in the organism body were discussed, and the potential adverse effects of nanoplastics on human health were evaluated. Nanoplastics can be ingested by organisms, be accumulated in their body and be transferred along the food chains. Nanoplastics showed effects on the growth, development and reproduction of organisms, and disturbing the normal metabolism. The toxic effects on living organisms mainly depended on the surface chemical properties and the particle size of nanoplastics. Positively charged nanoplastics showed more significant effects on the normal physiological activity of cells than negatively charged nanoplastics, and smaller particle sized nanoplastics could more easily penetrate the cell membranes, hence, accumulated in tissues and cells. Additionally, the release of additives and contaminants adsorbed on nanoplastics in organism body poses more significant threats to organisms than nanoplastics themselves. However, there are still knowledge gaps in the determination and quantification of nanoplastics, as well as their contaminant release mechanisms, degradation rates and process from large plastics to nanoplastics, and the transportation of nanoplastics along food chains. These challenges would hinder the risk assessment of nanoplastics in the environment. It is necessary to further develop the risk assessment of nanoplastics and deeply investigate its toxicological effects.
Afficher plus [+] Moins [-]Fine particulate matter exposure and medication dispensing during and after a coal mine fire: A time series analysis from the Hazelwood Health Study Texte intégral
2019
Limited research has examined the impacts of coal mine fire smoke on human health. The aim of this study was to assess the association between prolonged smoke PM₂.₅ exposure from a brown coal mine fire that burned over a seven week period in 2014 and medications dispensed across five localities in South-eastern Victoria, Australia. Spatially resolved PM₂.₅ concentrations were retrospectively estimated using a dispersion model coupled with a chemical transport model. Data on medications dispensed were collected from the national Pharmaceutical Benefits Schedule database for 2013–2016. Poisson distributed lag time series analysis was used to examine associations between daily mine fire-related PM₂.₅ concentrations and daily counts of medications dispensed for respiratory, cardiovascular or psychiatric conditions. Factors controlled for included: seasonality, long-term trend, day of the week, maximum ambient temperature and public holidays. Positive associations were found between mine fire-related PM₂.₅ and increased risks of medications dispensed for respiratory, cardiovascular and psychiatric conditions, over a lag range of 3–7 days. A 10 μg/m³ increase in coal mine fire-related PM₂.₅ was associated with a 25% (95%CI 19–32%) increase in respiratory medications, a 10% (95%CI 7–13%) increase in cardiovascular medications and a 12% (95%CI 8–16%) increase in psychiatric medications dispensed. These findings have the potential to better prepare for and develop more appropriate public health responses in the event of future coal mine fires.
Afficher plus [+] Moins [-]Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats Texte intégral
2019
Han, Yongli | Yu, Yuxiang | Liang, Zhen | Shi, Yan | Zhu, Yuchen | Zheng, Heping | Wang, Jundong | Zhang, Jianhai
The effect of fluoride as an ongoing topic has attracted much attentions due to the decline in overall human fertility worldwide. However, whether fluorine causes a temporary stimulus or permanent damage to the male reproductive system, as well as the mechanism of fluoride influencing spermatogenesis remained unclear. 48 adult male rats were randomly divided into four groups (twelve each). Control group received the distilled water, while the other three groups were treated with 25, 50, 100 mg/L NaF via drinking water for 8 weeks. Six rats from each group were selected randomly to detect the levels of various indices related to spermatogenesis. The remaining rats were given only distilled water and left for recovery of a period of 2 weeks. Results showed that the levels of serum CK, ALP, CHE, BUN, UA, and Cr, testis morphology and the ultrastructure of sperm acrosome and chromatoid body (CB) were significantly changed by fluoride. Interestingly, the elongated spermatid counts, spermatids elongation ratio, and mRNA expressions of Prm1/2 and MIWI, TDRD1, TDRD 6, TDRD7, PABP, and Hsp72 related to CB decreased markedly in fluoride treatment groups compared to the control. Furthermore, the expression levels of DDX25 and associated regulatory proteins like CRM1, HMG2, H4, TP2, and PGK2 were down-regulated by fluoride. After 2-weeks withdrawal period, out of the 19 altered spermatogenesis indicators, 15 indicators in 100 mg/L group and 3 indicators in 50 mg/L group still exhibited a significant change, while none showed change in 25 mg/L group. These results proved that the reversibility of fluoride toxicity is dose-dependent on the male reproductive system. Meanwhile, fluoride caused unrestored arrest during the haploid period of spermatogenesis, where reduced DDX25 and associated regulatory proteins play a crucial role in this process, which could provide the underlying insights to the toxic mechanism of fluoride induced male reproductive toxicity.
Afficher plus [+] Moins [-]