Affiner votre recherche
Résultats 1121-1130 de 2,492
Removal of Plant Pathogen Propagules from Irrigation Runoff using Slow Filtration Systems: Quantifying Physical and Biological Components
2014
Nyberg, Elizabeth T. | White, Sarah A. | Jeffers, Steven N. | Bridges, William C.
Recycling irrigation water is a common practice at ornamental plant nurseries for conserving water; however, it poses the risk of sourcing and dispersing waterborne plant pathogens, especially species of Phytophthora. Slow sand filtration is a water treatment process that can remove pathogens from water, but the slow rate of water treatment may limit its application at nursery operations. In this study, four novel substrates (crushed brick, calcined clay, polyethylene beads, and Kaldnes® medium) in addition to sand were examined to determine how effective each substrate was at removing zoospores of Phytophthora nicotianae from water. The effects of substrate physical parameters, substrate depths (0, 5, 10, 20, 40, and 60 cm), and microbe density (after nursery effluent was recirculated through each substrate for 21 days) on zoospore removal by each substrate were quantified. Sand was the most effective physical filter and supported development of the best biological filter for removing zoospores. Sand columns 40 and 60 cm deep removed zoospores completely using physical filtration alone, and zoospore removal by sand at 10- and 20-cm depths was increased with the addition of biological filtration. Kaldnes® medium and polyethylene beads were the least effective filtration substrates under all conditions tested. After 21 days of recirculating nursery effluent through substrate columns, microbe density in and zoospore removal by all substrates increased. With further optimization, crushed brick may have potential to be utilized as a recycled material for a slow filtration system focused on removing plant pathogens from irrigation water.
Afficher plus [+] Moins [-]Silicate Minerals as a Source of Arsenic Contamination in Groundwater
2014
Alam, Md Samrat | Wu, Yang | Cheng, Tao
Mineral dissolution plays an essential role in controlling geogenic arsenic (As) contamination in groundwater. Although reductive dissolution of Fe oxyhydroxides is generally considered a key As release mechanism in many aquifers, some recent studies argue that silicate minerals, normally considered “inert” in As release, are the primary source of As contamination under certain conditions. The objective of this study is to determine As distribution in different minerals in a natural sediment and identify As release mechanisms and the role of silicate minerals in As release. A sediment sample was collected, characterized, and tested using leaching experiments at a range of pH and redox potentials. Our results showed that silicate minerals, which make up the bulk of the sediment, are the main As reservoir, containing 75 % of As. Fe–Mn oxyhydroxides, which are minor components in the sediment, are the second largest As reservoir and hold 16 % of As. Leaching experiments showed that silicate mineral dissolution is an important As-releasing mechanism and that high pH and low redox potential promoted silicate mineral dissolution and As release.
Afficher plus [+] Moins [-]The Effects of Urbanization on Runoff Pollutant Concentrations, Loadings and Their Seasonal Patterns Under Cold Climate
2014
Valtanen, Marjo | Sillanpää, Nora | Setälä, Heikki
The effects of urbanization on runoff pollutant concentrations and pollutant loading were studied in three urban catchments of varying imperviousness and land use type in the city of Lahti, Finland. Imperviousness of the catchments were 19 % (“Low”), 62 % (“Intermediate”) and 89 % (“High”). During the 2-year study period, runoff quantity was measured continuously and samples were taken for water quality analysis. Besides imperviousness, land use type strongly affected pollutant concentrations: differences in total phosphorus (tot-P), Al, Cr, Zn and Pb concentrations were observed especially between the city centre catchments (High and Intermediate) and the residential catchment (Low), while total suspended solids (TSS), total nitrogen (tot-N), Mn, Co, Ni and Cu concentrations increased with increasing imperviousness. As for pollutant loads, imperviousness was strongly related to TSS, tot-P, Al, Mn, Zn, Cr, Co, Ni and Cu export. The effects of urbanization on runoff quality were season dependent: urbanization increased runoff volumes and, hence, pollutant loads, especially during warm seasons. Still, highest pollutant export in the catchments occurred during spring. Nevertheless, the warm period produced comparable loads to spring at the city centre catchments. Pollutant concentrations, especially in the city centre catchments, exceeded thresholds set for surface waters, indicating a need for runoff treatment in water quality protection.
Afficher plus [+] Moins [-]Canadian Power Stations and the National Pollutant Release Inventory (NPRI): A Success Story for Pollution Intensity?
2014
Tang, Minmeng | Mudd, Gavin M.
This paper presents a comprehensive analysis of the pollutant emissions and intensity from Canada’s power stations. An analysis of National Pollutant Release Inventory (NPRI) and site generation data shows significant variability with the dominant emissions pathway being point-source air emissions. In general, power stations are a very small fraction of Canada’s direct facility and estimated diffuse emissions, as well as showing significant variability of pollutant intensities per megawatt or megawatt hour of capacity or generation. The evidence also suggests that increased scale does not lead to a lower pollutant intensity, and that transfers and disposal pollutant loads are substantial, often representing most of the total reported pollutants. Overall, this study provides a valuable insight into the current status of pollutant intensities from Canada’s power stations, possible improvements to the NPRI and a valuable benchmark for future studies and international comparisons.
Afficher plus [+] Moins [-]Chemical Stabilization of Metal-Contaminated Mine Soil: Early Short-Term Soil-Amendment Interactions and Their Effects on Biological and Chemical Parameters
2014
Galende, M. A. | Becerril, J. M. | Gómez-Sagasti, M. T. | Barrutia, O. | Epelde, L. | Garbisu, C. | Hernández, A.
Chemical stabilization is a cost-effective, environmentally friendly, in situ remediation technology based on the application of organic and/or inorganic amendments to reduce soil metal bioavailability. Our objective was to assess the early short-term effects of organic amendments (sheep manure—SHEEP, poultry litter—POULTRY, cow slurry—COW, paper mill sludge mixed with poultry litter—PAPER), in sterilized and non-sterilized form, on the microbial and chemical properties, as well as on the phytotoxicity, of a Cd, Pb and Zn contaminated soil. Our results provide useful information regarding (1) the effectiveness of amendments for chemical stabilization of mine soil and (2) the impact of microbial populations present in the amendments on soil native microbial communities. Microbial populations present in the amendments did not substantially modify soil microbial functional diversity, as reflected by Biolog EcoPlates™ data, except for PAPER-amended soils. We observed a good correlation between lettuce root elongation (phytotoxicity bioassay) and Cd, Pb, and Zn CaCl₂-extractable concentrations in soil. SHEEP and PAPER amendments were particularly effective at increasing soil pH and reducing metal bioavailability and phytotoxicity, while POULTRY and COW led to higher values of soil microbial properties (respiration and functional diversity). Beneficial effects observed under POULTRY at the beginning of the experiment, due to the presence of easily degradable organic matter, were partially lost over time. Our results emphasize the importance of the early monitoring of soil properties (microbial and chemical) and phytotoxicity to properly identify bottlenecks during amendment selection for chemical stabilization, in terms of reduction in metal bioavailability and improvement in soil health.
Afficher plus [+] Moins [-]Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance
2014
Bonetta, Silvia | Bonetta, Sara | Ferretti, Elisa | Fezia, Giorgio | Gilli, Giorgio | Carraro, Elisabetta
The aim of this study was to evaluate the agricultural reuse of the digestate products (DPs) obtained from mesophilic anaerobic co-digestion of different organic wastes (sludge, cattle slurries and organic fraction of municipal solid wastes). At this scope, the content of faecal indicators and pathogens as well as the heavy metal concentration of DPs was monitored. The fertilizing performance of the DPs was also investigated. Co-digestion trials were performed using laboratory-scale (LRs) and pilot-scale reactors (PRs). The microbiological analysis of DPs showed the common presence of Salmonella and an inadequate reduction of indicator organisms during the digestion process, both in the LRs and the PRs. Moreover, the presence of pathogens (e.g. Listeria monocytogenes) in some DP samples highlighted the importance of the microbiological quality evaluation of the DPs to study the possible health risks for consumer. In several samples of DPs, the Cu, Ni and Zn contents exceeded the maximum admissible concentration for fertilizer, as specified by Italian law, suggesting possible environmental contamination if the DPs are used for agricultural purposes. Considering the fertilizing performance, significant differences of growth parameters were observed only for the DPs that were produced by LRs. In conclusion, this work can be considered as a preliminary study to evaluate the possible agricultural reuse of the digestate obtained from different organic wastes.
Afficher plus [+] Moins [-]Biodegradation of Bis-Azo Dye Reactive Black 5 by White-Rot Fungus Trametes gibbosa sp. WRF 3 and Its Metabolite Characterization
2014
Adnan, Liyana Amalina | Mohd Yusoff, Abdull Rahim | Hadibarata, Tony | Khudhair, Ameer Badr
The culture of Trametes gibbosa sp. white-rot fungi (WRF) 3 under mesophilic conditions can lead to the degradation of azo dye compounds. This ability of T. gibbosa sp. WRF 3 is attributed to the released enzymes that are able to catalyze the structural degradation of the azo dye compound. The effect of environmental factors such as carbon sources, nitrogen sources, and pH of growth medium were investigated in this research. The addition of 20 g/L glucose (carbon source) and yeast extract (nitrogen source) at pH 5 of growth medium enhanced the decolorization of Reactive Black 5 (RB5) dye up to 87.07 % within 30 days of incubation. The decolorization of RB5 can be analyzed using UV–vis spectroscopy and differential pulse cathodic stripping voltammetry (DPCSV). The maximum absorbance of RB5 was at 597 nm and decreased after the dye was treated with T. gibbosa sp. WRF 3. In the voltammetric analysis, we examined the effect of pH of Britton–Robinson buffer (BRB) medium on the detection of bis-azo compound of RB5. A stock solution of RB5 was used in the study, and it showed two reduction peak potentials at −0.5 and −0.7 V which attributed to the bis-azo bond, whereas the metabolic product showed one reduction peak at −0.6 V. The GC-MS mass spectrum confirmed the formation of metabolites at tR4.63 min and m/z of 73 after 30 days of incubation which was sec-butylamine.
Afficher plus [+] Moins [-]Stabilization of Heavy Metals in Mining Site Soil with Silica Extracted from Corn Cob
2014
Shim, Jaehong | Shea, Patrick J. | Oh, Byung-Taek
Corn cob silica (CCS), produced via a modification of the sol-gel method, can reduce heavy metal availability and stabilize contaminated soil on abandoned mining sites. Adding 5 % (w/w) CCS to mining site soil increased pH from 4.0 to 7.7, and cation exchange capacity increased from 94.5 to 100.3 cmol+/kg. Sequential extraction showed that adding CCS decreased heavy metal availability in the soil. Mobility factor (MF) values indicated that CCS reduced Pb mobility more than that of Zn or Cu in all fractions. Pb concentrations in leachate from all fractions using the toxicity characteristic leaching procedure (TCLP) were greatly decreased by adding 3 % (w/w) CCS. CCS similarly reduced Zn concentrations in TCLP leachate. CCS addition did not impact Cu concentrations in leachate, likely because concentrations were much lower than those of the other metals. As was generally less mobile than the heavy metals; however, As mobility and leachability tended to increase with CCS addition because its oxyanions arsenite and arsenate have low affinity for negatively charged surfaces on the CCS. Shoot and root growth of Spinacia oleracea L. (spinach) was much greater in CCS-treated soil than in unamended soil. Results demonstrate the utility of CCS to stabilize heavy metals in contaminated mining site soil, but this treatment may not be ideal for As-contaminated soils.
Afficher plus [+] Moins [-]Dominant Indigenous Bacteria in Gasoline-Treated Marshes Around Lake Pontchartrain, Louisiana
2014
Gupta, Astha | Yu, Kewei | Park, Joong-Wook
Considerable amount of gasoline from natural and anthropogenic sources, such as urban runoff during hurricanes and oil discharges from pleasure crafts, has been released into Lake Pontchartrain, Louisiana, which poses a threat to the lake marsh ecosystems. In this research, we evaluated the impact of gasoline on indigenous bacterial communities in three types of marsh sediments collected from the Lake Pontchartrain. Our data show that several bacterial species are significantly enriched in gasoline-treated sediments. DNA sequencing data indicate that the enriched bacteria in response to the gasoline treatment are Acidocella and Burkholderia spp. in freshwater marsh; Mariprofundus, Nitrosospira, and Ferrimicrobium spp. in brackish marsh; and three Pseudomonas spp. in salt marsh. Our research will help to understand a gasoline bioremediation by indigenous bacteria and to develop site-specific bioremediation strategies for the Lake Pontchartrain.
Afficher plus [+] Moins [-]Effect of Manure Treatment on Ammonia and Greenhouse Gases Emissions Following Surface Application
2014
Sun, F. | Harrison, J. H. | Ndegwa, P. M. | Johnson, K.
A 3-year study was conducted to determine the effects of anaerobic digestion (AD), large particle solids, and manure additive (More Than Manure, MTM™) on ammonia (NH₃) and greenhouse gas (GHG; carbon dioxide, nitrous oxide, and methane) emissions when raw and treated manure were surface-applied. The presence of large particle solids resulted in greater NH₃ emissions, probably, due to reduced infiltration of liquid manure into soil (P < 0.05). Anaerobic digestion did not have a consistent effect on NH₃ emission. Manure with greater ammoniacal nitrogen (AN) concentrations had significantly greater NH₃ loss after manure application (P < 0.05). Anaerobic digestion of manure also did not have a significant effect on GHG flux (P > 0.05). Raw manure with large particle solids had significantly greater CO₂ flux than the other raw manure treatments on the day of manure application (P < 0.05). There was no significant manure treatment effects (P > 0.2) on methane flux over the 3-day period after manure application. The manure additive MTM™ did not have significant effects (P > 0.05) on NH₃ and GHG fluxes. The results of this study suggest that solids and AN concentrations in manure are the most important factors affecting NH₃ emissions after surface application.
Afficher plus [+] Moins [-]