Affiner votre recherche
Résultats 1131-1140 de 6,535
Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China
2020
He, Mike Z. | Kinney, Patrick L. | Li, Tiantian | Chen, Chen | Sun, Qinghua | Ban, Jie | Wang, Jiaonan | Liu, Siliang | Goldsmith, Jeff | Kioumourtzoglou, Marianthi-Anna
Nitrogen dioxide (NO₂) is a well-established traffic emissions tracer and has been associated with multiple adverse health outcomes. Short- and long-term exposure to NO₂ has been studied and is well-documented in existing literature, but information on intermediate-term NO₂ effects and mortality is lacking, despite biological plausibility. We obtained daily NO₂ and mortality data from 42 counties in China from 2013 to 2015. Distributed-lag non-linear models were employed to investigate the relationship between non-accidental mortality and NO₂ up to 30 days before the event, including PM₂.₅, temperature, relative humidity, and holidays as covariates in a random effects meta-analysis pooling county-specific estimates. We repeated the analysis for cardiovascular- and respiratory-related mortality, and explored sex-stratified associations. Per 10 μg/m³ increase in NO₂, we estimated a 0.13% (95%CI: 0.03, 0.23%), 0.57% (95%CI: −0.04, 1.18%), and −0.14% (95%CI: −1.63, 1.37%) change in non-accidental mortality for same-day and previous-day NO₂ (lag0-1 cumulated), in the preceding 7 days (lag0-7 cumulated), and in the preceding 30 days (lag0-30 cumulated), respectively. The strongest estimate was observed for respiratory-related mortality in the lag0-30 cumulated effect for women (3.12%; 95%CI: −1.66, 8.13%). We observed a trend of higher effect estimates of intermediate-term NO₂ exposure on respiratory mortality compared to that of the short-term, although the differences were not statistically significant. Our results at longer lags for all-cause and cardiovascular mortality were sensitive to modeling choices. Future work should further investigate intermediate-term air pollution exposure given their potential biological relevance, but in larger scale settings.
Afficher plus [+] Moins [-]Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress
2020
Zhang, Cong | Ge, Jing | Lv, Meiwei | Zhang, Qi | Talukder, Milton | Li, Jin-Long
Cadmium (Cd), a heavy metal contaminant, exists in humans and animals throughout life and closely associate with severe hepatotoxicity. Selenium (Se) has been recognized as an effective chemo-protectant of Cd, but the underlying mechanisms remain unclear. The objective of the present study is to illustrate the antagonistic effect of Se against Cd-induced hepatotoxicity. Primary hepatocytes were cultured in the presence of 5 μM Cd, 1 μM Se and the mixture of 1 μM Se and 5 μM Cd for 24 h. Cell viability and morphology, antioxidant status, endoplasmic reticulum (ER) stress response and selenotranscriptome were assessed. It was observed that Se treatment dramatically alleviated Cd-induced hepatocytes death and morphological change. Simultaneously, Se mitigated Cd-induced oxidative stress by reducing ROS production, increasing reduced glutathione (GSH) level and increasing selenoenzyme (glutathione peroxidase, GPX) activity. Cd induced hepatotoxicity via disordering ER-resident selenoproteins transcription and triggering ER stress and unfolded protein response. Supplementary Se evidently relieved hepatocytes injury via modulating ER-resident selenoproteins transcription to inhibit ER stress. Collectively, our findings showed a potential protection of Se against Cd-induced hepatotoxicity via suppressing ER stress response.
Afficher plus [+] Moins [-]Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water
2020
Dobaradaran, Sina | Schmidt, Torsten C. | Lorenzo-Parodi, Nerea | Kaziur-Cegla, Wiebke | Jochmann, Maik A. | Nabipour, Iraj | Lutze, Holger V. | Telgheder, U. (Ursula)
Cigarette butts (CBs) are the most common littered items in the environment and may contain high amounts of polycyclic aromatic hydrocarbons (PAHs) from incomplete tobacco leave burning. The potential relevance of PAHs stemming from CBs for aquatic systems remain unclear since to date there is no systematic study on PAHs leaching from CBs. Therefore, in this study the leaching concentrations of 16 EPA-PAHs (except benzo(ghi)perylene) in 3 different types of water were measured. The concentrations of ΣPAHs leachates from 4 h to 21 days ranged from 3.9 to 5.7, 3.3–5.5, and 3.0–5.0 μg L⁻¹ for deionized, tap, and river waters, respectively. For all contact times, there were no substantial differences of the leachate concentrations of PAHs among different water types. Lighter PAHs had the highest concentrations among the detected PAHs and they were detected in the leachates already after 4 h. Concentrations of indeno(1,2,3-cd)pyrene, and dibenz(a,h)anthracene were below the limit of detection in all water samples at different contact times. At all contact times naphthalene and fluorene had the highest concentrations among the studied PAHs. Tap and river water samples with addition of sodium azide as chemical preservative contained significantly higher concentration of ΣPAHs. Our leaching data showed that leached concentrations of PAHs exceeded the Water Framework Directive (WFD) standards and considering the number of CBs annually littered this may pose a risk to aquatic organisms and potentially also humans.
Afficher plus [+] Moins [-]Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans
2020
Yang, Yunhan | Shao, Huimin | Wu, Qiuli | Wang, Dayong
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
Afficher plus [+] Moins [-]Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms
2020
Kik, Kinga | Bukowska, Bożena | Sicińska, Paulina
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
Afficher plus [+] Moins [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
Afficher plus [+] Moins [-]Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)
2020
Chen, Shan | Zhang, Wei | Li, Jiayuan | Yuan, Mingzhe | Zhang, Jiahui | Xu, Fan | Xu, Houtao | Zheng, Xiaoyan | Wang, Liqing
In recent years, antibiotic pollution has become worse, especially in China. In this study, the ecotoxicological effects of four frequently used antibiotics with different lipophilic degrees (log Kow) (sulfadiazine (SD), sulfamethazine (SM2), enrofloxacin (ENR), and norfloxacin (NOR)) at four concentrations of 1, 5, 20, and 50 mg L⁻¹ were examined using batch cultures of green alga Chlorella vulgaris and cyanobacterium Chrysosporum ovalisporum for 16 days based on changes in chlorophyll fluorescence parameters (chl a, Fv/Fm, and ΦPSII) and responses of the antioxidant system. Besides, the antibiotics removal efficiencies of the two microalgae were investigated. Sulfonamides (SD and SM2) had no significant inhibitory effect on the growth of C. ovalisporum, but had an inhibitory effect on C. vulgaris, whereas fluoroquinolones (ENR and NOR) significantly inhibited C. ovalisporum. The activities of superoxide dismutase, catalase, and glutathione reductase suggested that C. vulgaris was more tolerant to these antibiotics than C. ovalisporum. The increased malondialdehyde level in both algae indicated their tolerance against antibiotics. When compared with C. ovalisporum, C. vulgaris presented better capacity to remove antibiotics. In summary, the four antibiotics exerted time- or concentration-dependent ecotoxicological effects on the microalgae examined, whereas the microalgae could remove the antibiotics based on the log Kow of the antibiotics. The findings of this study contribute to effective understanding of the ecotoxicological effects of antibiotics and their removal by microalgae.
Afficher plus [+] Moins [-]Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil
2020
Xu, Congbin | Zhao, Jiwei | Yang, Wenjie | He, Li | Wei, Wenxia | Tan, Xiao | Wang, Jun | Lin, Aijun
Biochar has a wide range of feedstocks, and different feedstocks often resulted in different properties, such as element distribution and heavy metal immobilization performance. In this work, batch experiments were conducted to assess the effectiveness of biochar pyrolyzed from kitchen waste (KWB), corn straw (CSB), and peanut hulls (PHB) on immobilization of Cd and Pb in contaminated soil by planting swamp cabbage (Ipomoea aquatica Forsk.) with a combination of toxicological and physiological tests. The results showed that biochar could all enhance the soil pH, and reduce extractable Pb and Cd in soil by 22.61%–71.01% (KWB), 18.54%–64.35% (CSB), and 3.28%–60.25% (PHB), respectively. The biochar led to a drop in Cd and Pb accumulation in roots, stems, and leaves by 45.43%–97.68%, 59.13%–96.64%, and 63.90%–99.28% at the dosage of 60.00 mg/kg, respectively. The root length and fresh weight of swamp cabbage were promoted, while superoxide dismutase (SOD) and peroxidase (POD) decreased after biochar treatment. The distribution of heavy metal fractions before and after biochar treatment indicated that biochar could transform Cd and Pb into a state of lower bioavailability, thus inhibiting Cd and Pb uptake by swamp cabbage. Biochar with different feedstocks could be ranked by the following order according to immobilization performance: KWB > CSB > PHB.
Afficher plus [+] Moins [-]Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale
2020
Zhao, Fangkai | Chen, Liding | Yang, Lei | Sun, Long | Li, Shoujuan | Li, Min | Feng, Qingyu
Veterinary antibiotics have been detected as contaminants of emerging concern in soil environment worldwide. Animal manure is frequently applied to agricultural fields to improve soil fertility, which can result in introducing large amount of antibiotics into soil environment. However, few attempts have been made to identify the spatial and temporal dynamics of veterinary antibiotics in soil at the hillslope scale with different land uses. This study was performed to explore the pattern and variability of veterinary antibiotics in the soil in response to rainfall events. Results showed that higher concentrations of veterinary antibiotics were generally found in cropland (292.6 ± 280.1 ng/g) and orchard (228.1 ± 230.5 ng/g) than in forestland (13.5 ± 9.9 ng/g). After rainfall events, antibiotics accumulated in the soil at the positions where manure was applied, especially under high-intensity rainfall conditions. However, the antibiotic concentration in soil slightly increased from the top to the bottom of hills, thus indicating the restricted contribution of runoff to antibiotic transport, especially under low-intensity rainfall conditions. In addition, most antibiotics were sequestered in the surface soil (0–10 cm), and higher antibiotic concentrations were observed in deep soil (20–40 cm) in cropland than orchard. The soil aggregate, organic matter, and clay content played important roles in antibiotic sequestration along the hillslope subject to low-, medium-, and large-amount rainfall events, respectively. This study identified that land use, rainfall conditions, and soil structures jointly affect the spatial and temporal variability of antibiotics in soils on hillslopes.
Afficher plus [+] Moins [-]Persistent organic pollutants exposure in newborn dried blood spots and infant weight status: A case-control study of low-income Hispanic mother-infant pairs
2020
Gross, Rachel S. | Ghassabian, Akhgar | Vandyousefi, Sarvenaz | Messito, Mary Jo | Gao, Chongjing | Kannan, Kurunthachalam | Trasande, Leonardo
Persistent organic pollutants (POPs) are believed to alter metabolic homeostasis during fetal development, leading to childhood obesity. However, limited studies have explored how fetal chemical exposures relate to birth and infant weight outcomes in low-income Hispanic families at the highest risk of obesity. Therefore, we sought to determine associations between neonatal POPs exposure measured in newborn dried blood spots (DBS) and prenatal diet quality, birth weight, and overweight status at 18 months old. We conducted a case-control study nested within the Starting Early Program randomized controlled trial comparing POPs concentrations in infants with healthy weight (n = 46) and overweight status (n = 52) at age 18 months. Three categories of POPs, organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) were measured in archived newborn DBS. We assessed correlations between prenatal diet quality and neonatal POPs concentrations. Multivariable regression analyses examined associations between POPs (dichotomized at the mean) and birth weight z-score and weight status at 18 months, controlling for confounders. Seven of eight chemicals had detectable levels in greater than 94% of the sample. Higher protein, sodium and refined grain intake during pregnancy were correlated with lower POPs in newborn DBS. We found that high concentrations of perfluorooctanesulfonate (unstandardized coefficient [B]: −0.62, 95% confidence interval [CI]: −0.96 to −0.29) and perfluorohexanesulfate (B: −0.65, 95% CI: −0.99 to −0.31) were related to lower birth weight z-scores compared to those with low concentrations. We did not find associations between PBDEs, OCPs, and the other PFASs with birth weight z-scores, or between any POPs and weight status at 18 months. In conclusion, two PFASs were associated with lower birth weight, an important indicator of child health and growth, although direct associations with infant overweight status were not found. Whether neonatal POPs exposures contribute to economic and ethnic disparities in early obesity remains unclear.
Afficher plus [+] Moins [-]