Affiner votre recherche
Résultats 1131-1140 de 7,995
The diurnal cycle of summer tropospheric ozone concentrations across Chinese cities: Spatial patterns and main drivers Texte intégral
2021
Xia, Nan | Du, Enzai | Guo, Zhaodi | de Vries, Wim
China is experiencing severe tropospheric ozone pollution, especially during the summer period in cities. Previous studies have assessed the role of meteorological conditions and anthropogenic precursors in shaping the diurnal variation of ozone concentration in some Chinese cities or the spatial patterns of daytime ozone concentration, but less is known about the spatial variation and main regulators of the diurnal cycle of summer ozone concentrations in Chinese cities. Using monitoring data from 367 cities, we analyzed the spatial patterns and main regulators of daytime maximum, nighttime minimum and diurnal difference of summer (June–August) ozone concentration during 2015–2019. National mean values and standard deviations of daytime maximum and nighttime minimum of summer surface ozone concentration were 124.1 ± 27.5 and 33.4 ± 13.0 μg m⁻³, resulting in a diurnal difference of 90.7 ± 25.2 μg m⁻³. High values of daytime maximum, nighttime minimum, and diurnal difference of summer ozone concentration occurred in cities in northern China, especially in the North China Plain, and several city agglomerations in southern China. Daytime maximum ozone concentration was higher in cities with higher daytime PM₂.₅ and NO₂ concentrations, lower daytime precipitation and lower elevation. Nighttime minimum ozone concentration increased with lower nighttime precipitation, lower NO₂ concentration and CO concentration, higher nighttime maximum PM₂.₅ concentration and higher elevation. Diurnal difference of ozone concentration increased with lower elevation, lower daytime precipitation, and higher diurnal difference of CO and NO₂ concentrations. Our findings highlight different regulators for daytime and nighttime ozone and imply the need of joint regulation of PM₂.₅ and NO₂ emissions to control ozone pollution.
Afficher plus [+] Moins [-]Evaluation of stabilizing material and stabilization efficiency through comparative study of toxic heavy metal transfer between corn and peanut grown in stabilized field soil Texte intégral
2021
Lee, Yonghyeon | Cui, Mingcan | Son, Younggyu | Ma, Junjun | Han, Zhengchang | Khim, Jeehyeong
Soil contaminated with toxic heavy metals (THMs) was stabilized by adding a combination of waste resources in 7.0 wt%, including coal-mine drainage sludge, waste cow bone, and steelmaking slag, in the ratio of 5:35:60. Subsequently, corn and peanut were cultivated in treated soil to investigate the effects of the waste resources on THM mobility in soil and translocation to plants. Sequential extraction procedures (SEP) was used to analyze mobile phase THMs which could be accumulated in the plants. SEP shows that mobile Pb, Cd, Cu, Zn, Ni, Cr, and As were reduced by 8.48%, 29.22%, 18.85%, 21.66%, 4.58%, 62.78%, and 20.01%, respectively. The bioaccumulation of THMs was clearly hindered by stabilization; however, the increment in the amount of immobile-phase THMs and change in the amount of translocated THMs was not proportional. The corn grains grown above the soil surface were compared with the peanut grains grown beneath the soil surface, and the results indicating that the efficiency of stabilization on THM translocation may not depend on the contact of grain to soil but the nature of plant. Interestingly, the results of bioaccumulation with and without stabilization showed that the movement of some THMs inside the plants was affected by stabilization.
Afficher plus [+] Moins [-]Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China Texte intégral
2021
Ji, Wenjing | Liu, Chenghao | Liu, Zhenzhe | Wang, Chunwang | Li, Xiaofeng
Concentrations of airborne metal-rich particles are typically higher on subway platforms and in subway tunnels than in ambient air. The subway concourse is an area of direct air exchange with both platforms and the outside environment, but few researchers have measured the concentrations and composition of fine particles on subway concourses. We characterized the concentrations and composition of fine particles on six subway concourses in Nanjing, China in both summer and winter. We used a respiration rate-adjusted microenvironment exposure model to estimate the contribution of a 6-h work period to daily mean exposure to fine particulate matter of subway workers and compared the estimate with those for general indoor and outdoor workers. We found that particle concentrations were typically higher on the station concourses than in ambient air. The most abundant elements composing the particles were Fe, S, Ca, Si, and K in both subway concourses and reference ambient air, but their contents varied greatly between indoor and outdoor air. The indoor/outdoor ratios of Fe, Cu, and Mn were highest, and subway workers were disproportionately exposed to these three metals. The mean daily exposure dose to Fe was 44.8 μg for subway workers, approximately five times the exposure dose of indoor and outdoor workers. Daily exposure doses of Cu, Mn, V, Sr, As, Co, Sn, and Cr were also higher for subway workers. The quality of indoor air at subway stations is therefore of occupational health concern and strategies should be formulated to reduce worker exposure.
Afficher plus [+] Moins [-]Hydrochemical changes of a spring due to the May 30, 2014 Ms 6.1 Yingjiang earthquake, southwest China Texte intégral
2021
Chen, Liying | Wang, Guangcai
Groundwater chemistry can be affected by and related to earthquakes, thus it is crucial to understand the hydrochemical changes and associated processes caused by earthquakes for post-seismic groundwater utilization. Here we reported the major ion concentrations changes of the Ganze Spring in response to the May 30, 2014 Ms 6.1 Yingjiang earthquake, southwest China based on the daily time series (from 1st January 2012 to 20th July 2014) of Ca²⁺, Mg²⁺ and HCO₃⁻ concentrations, as well as data of bulk strain and Peak Ground Velocity (PGV) recorded at a nearby station. The results showed that the entire hydrochemical response process can be divided into two stages after the earthquake occurred: 1). decline stage which was characterized by an increasingly decline of the three ion concentrations, indicating a gradually significant dilution effect. At first, the relationship of molar concentrations of ions showed no obvious changes; but later as the rate of decrease in ion concentrations increased, the relationship between Ca²⁺ and HCO₃⁻ reversed from Ca²⁺ excess to HCO₃⁻ excess, probably resulting from a relatively decreased Ca²⁺ contribution from dissolution of gypsum and dolomite due to dilution in mixing water. 2). recover stage when the ion concentrations recovered gradually with relatively lower values than that at pre-earthquake, revealing the reduction of dilute water inflow. In combination with the bulk strain and PGV data, the study suggested that major ion concentrations changes are attributed to dilution effect due to new fracture creation or unclogging/clogging of fractures triggered by the earthquake. The results could enhance the understanding of earthquake induced water chemistry changes and could have implications for water resources management and security in tectonically active areas.
Afficher plus [+] Moins [-]Different pyrolysis kinetics and product distribution of municipal and livestock manure sewage sludge Texte intégral
2021
Lee, S. (Sangho) | Kim, Young-Min | Siddiqui, Muhammad Zain | Park, Young-Kwon
Thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry measurements were taken to examine the kinetic behavior and product distribution on the thermal and catalytic pyrolysis of different types of sewage sludge. Compared to livestock manure sewage sludge (LMSS), municipal sewage sludge (MSS) had larger ash (30.3%) and lower fixed carbon (7.9%) contents. The peak intensities for the 1ˢᵗ decomposition region (200–380 °C) on the derivative thermogravimetric curve of MSS were higher than those of LMSS. In contrast, the peak height in the 2ⁿᵈ temperature region (>380 °C) of MSS was lower than that of LMSS. The activation energy for the pyrolysis of MSS (Avg. 186.5 kJ/mol) was lower than that of LMSS (Avg. 263.4 kJ/mol) over the entire conversion range. MSS produced larger amounts of fatty acids and cholesterol than LMSS. The in-situ catalytic pyrolysis of MSS over HBeta using a pyrolyzer-gas chromatography/mass spectrometry also produced larger amounts of aromatic hydrocarbons than LMSS, suggesting that its better feedstock properties strongly influence the final product oil quality.
Afficher plus [+] Moins [-]Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants Texte intégral
2021
Ahmed, Temoor | Noman, Muhammad | Manzoor, Natasha | Shāhid, Muḥammad | Hussaini, Khalid Mahmud | Rizwan, Muhammad | Ali, Shafaqat | Maqsood, Awais | Li, Bin
Arsenic (As) accumulation catastrophically disturbs the stability of agricultural systems and human health. Rice easily accumulates a high amount of As from agriculture fields as compare with other cereal crops. Hence, innovative soil remediation methods are needed to deal with the detrimental effects of As on human health causing food security challenges. Here, we report the green synthesis and characterization of magnesium oxide nanoparticles (MgO-NPs) from a native Enterobacter sp. strain RTN2, which was genetically identified through 16S rRNA gene sequence analysis. The biosynthesis of MgO-NPs in reaction mixture was confirmed by UV–vis spectral analysis. X-ray diffraction (XRD) and fourier transform-infrared spectroscopy (FTIR) analysis showed the crystalline nature and surface properties of MgO-NPs, respectively. Moreover, electron microscopy (SEM-EDS, and TEM) imaging confirmed the synthesis of spherical shape of MgO-NPs with variable NPs sizes ranging from 38 to 57 nm. The results revealed that application of MgO-NPs (200 mg kg⁻¹) in As contaminated soil significantly increased the plant biomass, antioxidant enzymatic contents, and decreased reactive oxygen species and acropetal As translocation as compared with control treatment. The study concluded that biogenic MgO-NPs could be used to formulate a potent nanofertilizer for sustainable rice production in metal contaminated soils.
Afficher plus [+] Moins [-]Multi-regional industrial wastewater metabolism analysis for the Yangtze River Economic Belt, China Texte intégral
2021
Han, Dengcheng | Huang, Gordon | Liu, Lirong | Zhai, Mengyu | Gao, Sichen
Enormous wastewater discharges have significantly impeded the sustainable development. As several economic belt has been formed in China, systematic analysis of multi-regional wastewater metabolic system is required for advancing wastewater mitigation effectively and efficiently. In this study, a distributive environmental input-output model (DEIO) is developed for the Yangtze River Economic Belt (YREB) to provide bases for supporting sustainable development from inter-regional and inter-sectoral perspectives. The discharges and flows of wastewater and related pollutants (i.e., chemical oxygen demand (COD) and ammonia nitrogen (AN)) among sectors and regions are analyzed to providing solid bases for wastewater management within the YREB. The results show that the industrial wastewater mitigation in YREB is desired urgently. The industrial wastewater discharges in Jiangsu and Zhejiang provinces are numerous, while Hunan and Yunnan provinces are more inclined to suffer from serious COD and AN pollution. In addition, the manufacture of food, tobacco, chemical materials, and pharmaceutical are the typical sectors with a large amount of direct wastewater discharge, and the tertiary industry is ranked at the first in indirect wastewater discharge. According to the analysis, the implementation of the “Supply-side Structure Reform” and the “Replace Subsidies with Rewards” policy can benefit the wastewater mitigation in the YREB.
Afficher plus [+] Moins [-]Contribution of mulch film to microplastics in agricultural soil and surface water in China Texte intégral
2021
Ren, Shu-Yan | Kong, Si-Fang | Ni, Hong-Gang
Agricultural mulch film (AMF) is deemed an important source of microplastics (MPs) in agricultural soil (AS). However, quantitating the contribution of AMFs to MPs in farmland soil and surface water remains a considerable challenge to date. In the present study, a basic framework was developed to address these concerns. First, the concentrations of MPs in soil derived from AMF abrasion (CMP) and the total MPs from all sources in AS (CTMP) were measured. Then, the ratios of CMP to CTMP, i.e., the contribution of AMFs to MPs in AS, were calculated. The contribution of AMFs to MPs in surface water via soil erosion was calculated based on CTMP values, the ratios of CMP to CTMP, soil erosion intensities (SEIs), and farmland areas. Furthermore, the potential contribution of soil erosion to MPs in the ocean was estimated. In China, the inventory of MPs in surface AS in 2018 ranged from 4.9 × 10⁶ to 1.0 × 10⁷ tons according to our results. AMFs contributed 10%–30% of the CTMP with certainties of 60–95%. Assuming that all MPs in AS can be exhaustively transferred to surface water via soil erosion, the national mass transfer amount of MPs (MTTMP) from AS to surface water reached 1.2 × 10⁵−2.2 × 10⁵ tons (∼2% of the inventory of MPs in the AS of China); the fluxes of MPs into the ocean from AS were 3.4 × 10⁴−6.6 × 10⁴ tons, assuming that all MPs in the AS of coastal provinces enter the ocean. It is likely that AMFs contributed 10%–30% MTTMP and fluxes of MPs to the ocean according to the ratios of CMP to CTMP. Apparently, approximately 30% of the national MTTMP (i.e., the rate of MP flux to the ocean to MTTMP) was input to the ocean.
Afficher plus [+] Moins [-]Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans Texte intégral
2021
Huang, Jiwei | Liao, Wan-Ru | How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Afficher plus [+] Moins [-]Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils Texte intégral
2021
Espeso, M Botella | Corada-Fernández, C. | García-Delgado, M. | Candela, L. | González-Mazo, E. | Lara-Martín, P.A. | Jiménez-Martínez, J.
Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils Texte intégral
2021
Espeso, M Botella | Corada-Fernández, C. | García-Delgado, M. | Candela, L. | González-Mazo, E. | Lara-Martín, P.A. | Jiménez-Martínez, J.
Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12–C18) and ethoxymers (EO3, EO6, and EO8) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (Kd) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (β) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of Kd on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments.
Afficher plus [+] Moins [-]Structural control of the non-ionic surfactant alcohol ethoxylates (AEOs) on transport in natural soils Texte intégral
2021
Botella Espeso, M. | Corada Fernández, Carmen | García Delgado, M. | Candela, L. | González Mazo, Eduardo | Lara Martín, Pablo Antonio | Jimenez Martínez, J. | Química Física
Surfactants, after use, enter the environment through diffuse and point sources such as irrigation with treated and non-treated waste water and urban and industrial wastewater discharges. For the group of non-ionic synthetic surfactant alcohol ethoxylates (AEOs), most of the available information is restricted to the levels and fate in aquatic systems, whereas current knowledge of their behavior in soils is very limited. Here we characterize the behavior of different homologs (C12-C18) and ethoxymers (E03, E06, and E08) of the AEOs through batch experiments and under unsaturated flow conditions during infiltration experiments. Experiments used two different agricultural soils from a region irrigated with reclaimed water (Guadalete River basin, SW Spain). In parallel, water flow and chemical transport were modelled using the HYDRUS-1D software package, calibrated using the infiltration experimental data. Estimates of water flow and reactive transport of all surfactants were in good agreement between infiltration experiments and simulations. The sorption process followed a Freundlich isotherm for most of the target compounds. A systematic comparison between sorption data obtained from batch and infiltration experiments revealed that the sorption coefficient (K-d) was generally lower in infiltration experiments, performed under environmental flow conditions, than in batch experiments in the absence of flow, whereas the exponent (beta) did not show significant differences. For the low clay and organic carbon content of the soils used, no clear dependence of K-d on them was observed. Our work thus highlights the need to use reactive transport parameterization inferred under realistic conditions to assess the risk associated with alcohol ethoxylates in subsurface environments. (C) 2020 The Authors. Published by Elsevier Ltd.
Afficher plus [+] Moins [-]